Lagrangian explicitly preserves symmetries of a theory?

copernicus1
Messages
98
Reaction score
0
How are the Hamiltonian and Lagrangian different as far as preserving symmetries of a theory? Peskin and Schroeder write that the path integral formalism is nice because since it's based on the action and Lagrangian it explicitly preserves all the symmetries, but I'm wondering how/why the Hamiltonian doesn't. I know H isn't invariant under Lorentz transformations, but isn't it true that quantities commuting with H are conserved? So can't you find other symmetries of the system this way using the Hamiltonian? Or are they mainly referring to the Lorentz invariance of the Lagrangian (density) and action?

Thanks!
 
Physics news on Phys.org
The two formalisms are equivalent. However, the hamiltonian formulation singles out the time variable through the definition of the canonical momentum. Any time you single something out you break a symmetry. However, while explicit lorentz invariance is broken by this, it can be recovered.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top