Lagrangian of 3 masses connected by springs, non-parallel.

  • Thread starter Thread starter Daley192303
  • Start date Start date
  • Tags Tags
    Lagrangian Springs
AI Thread Summary
The discussion focuses on modeling the Lagrangian for three masses connected by two springs in a non-linear configuration. The initial Lagrangian for a linear arrangement is straightforward, but complications arise when introducing an angle θ for the second spring. Concerns about the flexing and bending of the springs are highlighted, particularly regarding how this affects the angles between the masses. Using vectors is suggested as a potential solution, but there are uncertainties about whether they can adequately represent the necessary information related to Young's modulus. The challenge lies in the variable angles between the masses due to the springs' flexing, despite the constant angle of intersection at the central mass.
Daley192303
Messages
2
Reaction score
0
Writing the Lagrangian for 3 masses and 2 springs in a line is easy.

KE=1/2(m*v^2)

L=KE(m1)+k/2(l1-(x2-x1))^2+KE(m2)+k2/2[L2-(x3-x2)]^2+KE(m3)

However, I wish to model non-linear linkages of the above 3 masses and 2 springs.

Suppose that the second spring (m2-m3) is angle θ away from the axis of the first spring (m1-m2).

I am quite daunted by the flexing or bending of the springs.
 
Physics news on Phys.org
Daley192303 said:
Writing the Lagrangian for 3 masses and 2 springs in a line is easy.

KE=1/2(m*v^2)

L=KE(m1)+k/2(l1-(x2-x1))^2+KE(m2)+k2/2[L2-(x3-x2)]^2+KE(m3)

However, I wish to model non-linear linkages of the above 3 masses and 2 springs.

Suppose that the second spring (m2-m3) is angle θ away from the axis of the first spring (m1-m2).

I am quite daunted by the flexing or bending of the springs.
If you simply replace the lengths by vectors, that should work. The angle will not be constant, right?
 
@haruspex Good question about the angle being constant. The angle of intersection should be constant for a given simulation, however the springs themselves may bend.

Using vectors sounds promising. I am not sure if the vectors (alone) would contain the necessary information given Young's modulus, which is a variation of Hook's Law that applies to the flexing that would occur given the constant angle of intersection, which I should have mentioned to begin with.

The tricky thing about Young's modulus is that while the angles between the springs may be constant at the central mass, the relative angles between the three masses is variable due to flexing of the springs.
 
Last edited:
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top