Lagrangian of system of bodies in PN approximation [Landau Textbook]

AI Thread Summary
The discussion revolves around understanding the transition from the Lagrangian of a single particle to the total Lagrangian as presented in a specific section of a physics text. The initial confusion arises after the equation 106.16, where the user struggles to derive equation 106.17 by substituting various variables such as h_{00}, h_{0α}, h_{αβ}, φ, and φ_a. A suggested approach includes calculating the partial derivatives of these variables with respect to the position vector r, specifically starting with h_{00}. The user is encouraged to show that the derivative of the Lagrangian with respect to r at a specific point equals the total Lagrangian's derivative at that point. The complexity of the calculations is acknowledged, with a focus on ensuring accuracy in the derivatives to facilitate the transition from 106.16 to 106.17.
GrimGuy
Messages
11
Reaction score
2
Hey guy,
I'm having problems to understand the final part of this section. The book says we have the lagrangian from one particle (106.16), then we have some explanation and then the total lagrangian is given(106.17). For me is everything fine until the 106.16, then i couldn't get what is going on. What I've tried to do is, I've substituted the ##h_{00}##, ##h_{0\alpha} ##, ##h_{\alpha \beta } ## and ##\phi##, ##\phi_{a}## into 106.16 and tried to find 106.17 (no sucsses). Any enlightenment on this will be extremely appreciated.

1618926369424.png
1618926388134.png
1618926407272.png
 
Physics news on Phys.org
This does look slightly yucky! I reckon what you have to do to prove it for yourself is, like they suggest, show that ##\left( \partial L_a / \partial \mathbf{r}\right)## evaluated at ##\mathbf{r} = \mathbf{r}_a## is equal to ##\partial L / \partial \mathbf{r}_a##. But I can't see a particularly nice way of doing it.

First you're going to want to work out all of ##\partial h_{00} / \partial \mathbf{r}##, then ##\partial h_{0\alpha} / \partial \mathbf{r}##, then ##\partial h_{\alpha \beta} / \partial \mathbf{r}##. For instance, let's have a look at ##\partial h_{00} / \partial \mathbf{r}## first. We know that\begin{align*}

\partial_{\mathbf{r}} \phi &= \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}\end{align*}Hence\begin{align*}
\partial_{\mathbf{r}} h_{00} &= \frac{2}{c^2} \partial_{\mathbf{r}} \phi + \frac{4\phi}{c^2} \partial_{\mathbf{r}} \phi + \frac{2k}{c^4} \sum_b m_b \phi_b' \frac{m_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{3k}{c^4} \sum_b m_b v_b^2 \frac{(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}
\end{align*}which is the same as \begin{align*}

\partial_{\mathbf{r}} h_{00} = &\frac{2}{c^2} \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{-4k^2}{c^2} \sum_b \sum_c \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3|\mathbf{r} - \mathbf{r}_c|} \\

&+ \frac{-2k^2}{c^4} \sum_b \sum_c' \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3 |\mathbf{r}_b - \mathbf{r}_c|} + \frac{3k}{c^4} \sum_b \frac{m_b v_b^2 (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}

\end{align*}and et. cetera, assuming there's no major mistakes in the above. I really don't know if there's any simpler way. Good luck! 😜
 
Last edited by a moderator:
etotheipi said:
This does look slightly yucky! I reckon what you have to do to prove it for yourself is, like they suggest, show that ##\left( \partial L_a / \partial \mathbf{r}\right)## evaluated at ##\mathbf{r} = \mathbf{r}_a## is equal to ##\partial L / \partial \mathbf{r}_a##. But I can't see a particularly nice way of doing it.

First you're going to want to work out all of ##\partial h_{00} / \partial \mathbf{r}##, then ##\partial h_{0\alpha} / \partial \mathbf{r}##, then ##\partial h_{\alpha \beta} / \partial \mathbf{r}##. For instance, let's have a look at ##\partial h_{00} / \partial \mathbf{r}## first. We know that\begin{align*}

\partial_{\mathbf{r}} \phi &= \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}\end{align*}Hence\begin{align*}
\partial_{\mathbf{r}} h_{00} &= \frac{2}{c^2} \partial_{\mathbf{r}} \phi + \frac{4\phi}{c^2} \partial_{\mathbf{r}} \phi + \frac{2k}{c^4} \sum_b m_b \phi_b' \frac{m_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{3k}{c^4} \sum_b m_b v_b^2 \frac{(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}
\end{align*}which is the same as \begin{align*}

\partial_{\mathbf{r}} h_{00} = &\frac{2}{c^2} \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{-4k^2}{c^2} \sum_b \sum_c \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3|\mathbf{r} - \mathbf{r}_c|} \\

&+ \frac{-2k^2}{c^4} \sum_b \sum_c' \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3 |\mathbf{r}_b - \mathbf{r}_c|} + \frac{3k}{c^4} \sum_b \frac{m_b v_b^2 (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}

\end{align*}and et. cetera, assuming there's no major mistakes in the above. I really don't know if there's any simpler way. Good luck! 😜
I got your idea, i'll try it. But, do you have other idea to start from 106.16 and arrive in the 106.17, this is my main go.
Thanks man.
 
TLDR: is Blennow "Mathematical Methods for Physics and Engineering" a good follow-up to Altland "Mathematics for physicists"? Hello everybody, returning to physics after 30-something years, I felt the need to brush up my maths first. It took me 6 months and I'm currently more than half way through the Altland "Mathematics for physicists" book, covering the math for undergraduate studies at the right level of sophystication, most of which I howewer already knew (being an aerospace engineer)...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...
Back
Top