Lagrangian of system of bodies in PN approximation [Landau Textbook]

Click For Summary
SUMMARY

The discussion focuses on deriving the total Lagrangian (equation 106.17) from the single particle Lagrangian (equation 106.16) in the context of the PN (Post-Newtonian) approximation as presented in the Landau textbook. The participants emphasize the need to compute partial derivatives of the metric perturbations, specifically ##h_{00}##, ##h_{0\alpha}##, and ##h_{\alpha \beta}##, with respect to the position vector ##\mathbf{r}##. The key insight is to demonstrate that ##\left( \partial L_a / \partial \mathbf{r}\right)## evaluated at ##\mathbf{r} = \mathbf{r}_a## equals ##\partial L / \partial \mathbf{r}_a##, which is crucial for validating the transition from 106.16 to 106.17.

PREREQUISITES
  • Understanding of Lagrangian mechanics and its application in classical physics.
  • Familiarity with the Post-Newtonian approximation in general relativity.
  • Knowledge of metric perturbations in the context of gravitational theories.
  • Proficiency in calculus, particularly in computing partial derivatives.
NEXT STEPS
  • Study the derivation of the Lagrangian in the context of the PN approximation.
  • Learn how to compute partial derivatives of metric components in general relativity.
  • Explore the implications of the Lagrangian formulation in multi-body systems.
  • Investigate the transition from Newtonian to Post-Newtonian frameworks in gravitational physics.
USEFUL FOR

Physicists, graduate students in theoretical physics, and researchers focusing on gravitational theories and the dynamics of multi-body systems in the context of general relativity.

GrimGuy
Messages
11
Reaction score
2
Hey guy,
I'm having problems to understand the final part of this section. The book says we have the lagrangian from one particle (106.16), then we have some explanation and then the total lagrangian is given(106.17). For me is everything fine until the 106.16, then i couldn't get what is going on. What I've tried to do is, I've substituted the ##h_{00}##, ##h_{0\alpha} ##, ##h_{\alpha \beta } ## and ##\phi##, ##\phi_{a}## into 106.16 and tried to find 106.17 (no sucsses). Any enlightenment on this will be extremely appreciated.

1618926369424.png
1618926388134.png
1618926407272.png
 
Physics news on Phys.org
This does look slightly yucky! I reckon what you have to do to prove it for yourself is, like they suggest, show that ##\left( \partial L_a / \partial \mathbf{r}\right)## evaluated at ##\mathbf{r} = \mathbf{r}_a## is equal to ##\partial L / \partial \mathbf{r}_a##. But I can't see a particularly nice way of doing it.

First you're going to want to work out all of ##\partial h_{00} / \partial \mathbf{r}##, then ##\partial h_{0\alpha} / \partial \mathbf{r}##, then ##\partial h_{\alpha \beta} / \partial \mathbf{r}##. For instance, let's have a look at ##\partial h_{00} / \partial \mathbf{r}## first. We know that\begin{align*}

\partial_{\mathbf{r}} \phi &= \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}\end{align*}Hence\begin{align*}
\partial_{\mathbf{r}} h_{00} &= \frac{2}{c^2} \partial_{\mathbf{r}} \phi + \frac{4\phi}{c^2} \partial_{\mathbf{r}} \phi + \frac{2k}{c^4} \sum_b m_b \phi_b' \frac{m_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{3k}{c^4} \sum_b m_b v_b^2 \frac{(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}
\end{align*}which is the same as \begin{align*}

\partial_{\mathbf{r}} h_{00} = &\frac{2}{c^2} \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{-4k^2}{c^2} \sum_b \sum_c \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3|\mathbf{r} - \mathbf{r}_c|} \\

&+ \frac{-2k^2}{c^4} \sum_b \sum_c' \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3 |\mathbf{r}_b - \mathbf{r}_c|} + \frac{3k}{c^4} \sum_b \frac{m_b v_b^2 (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}

\end{align*}and et. cetera, assuming there's no major mistakes in the above. I really don't know if there's any simpler way. Good luck! 😜
 
Last edited by a moderator:
  • Like
Likes   Reactions: GrimGuy
etotheipi said:
This does look slightly yucky! I reckon what you have to do to prove it for yourself is, like they suggest, show that ##\left( \partial L_a / \partial \mathbf{r}\right)## evaluated at ##\mathbf{r} = \mathbf{r}_a## is equal to ##\partial L / \partial \mathbf{r}_a##. But I can't see a particularly nice way of doing it.

First you're going to want to work out all of ##\partial h_{00} / \partial \mathbf{r}##, then ##\partial h_{0\alpha} / \partial \mathbf{r}##, then ##\partial h_{\alpha \beta} / \partial \mathbf{r}##. For instance, let's have a look at ##\partial h_{00} / \partial \mathbf{r}## first. We know that\begin{align*}

\partial_{\mathbf{r}} \phi &= \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}\end{align*}Hence\begin{align*}
\partial_{\mathbf{r}} h_{00} &= \frac{2}{c^2} \partial_{\mathbf{r}} \phi + \frac{4\phi}{c^2} \partial_{\mathbf{r}} \phi + \frac{2k}{c^4} \sum_b m_b \phi_b' \frac{m_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{3k}{c^4} \sum_b m_b v_b^2 \frac{(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}
\end{align*}which is the same as \begin{align*}

\partial_{\mathbf{r}} h_{00} = &\frac{2}{c^2} \sum_b \frac{km_b(\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3} + \frac{-4k^2}{c^2} \sum_b \sum_c \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3|\mathbf{r} - \mathbf{r}_c|} \\

&+ \frac{-2k^2}{c^4} \sum_b \sum_c' \frac{m_b m_c (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3 |\mathbf{r}_b - \mathbf{r}_c|} + \frac{3k}{c^4} \sum_b \frac{m_b v_b^2 (\mathbf{r} - \mathbf{r}_b)}{|\mathbf{r} - \mathbf{r}_b|^3}

\end{align*}and et. cetera, assuming there's no major mistakes in the above. I really don't know if there's any simpler way. Good luck! 😜
I got your idea, i'll try it. But, do you have other idea to start from 106.16 and arrive in the 106.17, this is my main go.
Thanks man.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K