Dickfore
- 2,987
- 5
(Again, you kept an extra \omega in the second term.) I see you corrected that.
Also:
<br /> \int_{0}^{t}{\sin{(2 \omega t)} \, dt} = -\left.\frac{1}{2 \omega} \, \cos{(\omega t)}\right|^{t}_{0} = \frac{1}{2\omega} \, \left[1 - \cos{(2 \omega t)}\right]<br />
Finally, what will be the change in S during one period (take t = 2\pi/\omega in the above formula)?
Also:
<br /> \int_{0}^{t}{\sin{(2 \omega t)} \, dt} = -\left.\frac{1}{2 \omega} \, \cos{(\omega t)}\right|^{t}_{0} = \frac{1}{2\omega} \, \left[1 - \cos{(2 \omega t)}\right]<br />
Finally, what will be the change in S during one period (take t = 2\pi/\omega in the above formula)?