Laplace transform and fourier transform

coordinates
Messages
2
Reaction score
0

Homework Statement


F{f(t)} is the Fourier transform of f(t) and L{f(t)} is the Laplace transform of f(t)

why F{f(t)} = L{f(t)} where s = jw in L{f(t)}


The Attempt at a Solution


I suppose the definition of F{f(t)} is

∫[f(t)e^-jwt]dt

where the lower integral limit is -∞ and higher intergral limit is +∞.

And I suppose the definition of L{f(t)} is

∫[f(t)e^-st]dt

where the lower integral limit is -∞ and higher integral limit is +∞.(that is bilateral Laplace transform)

and i think it is obviously to say F{f(t)} = L{f(t)} where s = jw in L{f(t)} just by substitute s = jw in ∫[f(t)e^-st]dt.

My solution is so simple that I can't believe it's a problem assigned by my professor!
Some guy please tell me if I am correct or not, and where it is.

Any reference or advise will be appreciated.

thanks in advance.
 
Physics news on Phys.org
Yes you are correct, as long as the imaginary axis is inside the region of convergence.
 
susskind_leon said:
Yes you are correct, as long as the imaginary axis is inside the region of convergence.

3x~ I am more confident~
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top