Laplace transform please check my answer

cabellos
Messages
76
Reaction score
1
I have to find the laplace transform of (t+2)sinh2t

my answer is (4s/(s^2 + 4)^2 ) + (4/(s^2 - 4))

is this simplified as much as possible...?
 
Physics news on Phys.org
Depends on what you regard as "simplification".
You might throw everything ont a common denominator, but I'm not too sure that is a simplification.
 
first off sorry for double posting...

secondly, is my answer correct...Id really aprreciate it if someone could check.

Thanks
 
using maple:

laplace:
(t+2)\sinh 2t

equals:
\frac{4(s^2+s-4)}{(s+2)^2(s-2)^2}

You can put that in the form you need to check. Or if really lazy (as I'm being) plug in s values to get an idea if you are correct, don't use this as proof that they are the same.

Also, why don't you just perform an inverse laplace on your expression to check?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top