How to Prove the Laplace Transform of f(t/b) Equals bF(bs) for b ≠ 0?

magnifik
Messages
350
Reaction score
0
show that L{f(t/b)} = bF(bs), b is not equal to 0

i know that
L{f(t)} = \inte-stf(t) dt = F(s)
so
L{f(t/b)} = \inte-stf(t/b) dt

any tips on how to start? thx
 
Physics news on Phys.org
Do a u substitution to change the integration variable. Substitute u=t/b.
 
do i also have to plug in (t/b) into e-st so that it becomes e-s(t/b) ?
 
magnifik said:
do i also have to plug in (t/b) into e-st so that it becomes e-s(t/b) ?

You need to write e^(-st) in terms of u.
 
so..
u = t/b
t = bu
e^(-st)
e^(-sbu)
 
magnifik said:
so..
u = t/b
t = bu
e^(-st)
e^(-sbu)

Sure. Now don't forget to add a factor to change the dt to a du.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top