Laplace Transforms: Explaining Unit Step Function

  • Thread starter Thread starter aspiring_gal
  • Start date Start date
  • Tags Tags
    Laplace
aspiring_gal
Messages
9
Reaction score
0
EXPLAIN LAPLACE TRANSFORM OF UNIT STEP FUNTION?

i.e L{u(t)} = 1/s
 
Physics news on Phys.org
The unit step function is defined as::

<br /> u(t)=\begin{cases} 0, &amp; t &lt; 0 \\ 1, &amp; t \ge 0 \end{cases}<br />

Now take the Laplace transform.

<br /> L[u(t)]=\int_0^\infty u(t) e^{-st} dt=\int_0^\infty 1*e^{-st} dt<br />

Because on the interval 0 \leq x &lt; \infty, u(t)=1.

You should be able to work it out now.

The same holds for the two-sided Laplace transform, because on the interval -\infty&lt;x&lt;0 the unit step function is 0.
 
Perhaps what you really want is L(u(t-a)).

u(t-a)=\begin{cases} 0, &amp; t &lt; a \\ 1, &amp; t \ge a \end{cases}

Then
L(u(t-a))= \int_0^\infty u(t-a)e^{-st} dt= \int_a^\infty e^{-st}dt
Let v= t- a. Then t= v+ a, dv= dt, when t= a, v= 0, and when t= \infty, v= \infty. The integral becomes
L(u(t-a)= \int_0^\infty e^{s(v+a)}dv= \int_0^\infty e^{sv}e^{sa}dv
= e^{sa}\int_0^\infty e^{sv}dv= e^{sa}e^{-st}dt
and that last integral is the Laplace transform of 1.

That u(t-a) step function multiplying a function basically multiplies the Laplace transform of the function by e^{as}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top