Leading non-vanishing term of the groundstate for ##H_0##

  • Thread starter Thread starter guyvsdcsniper
  • Start date Start date
  • Tags Tags
    Term
Click For Summary
The discussion focuses on calculating the second-order energy shift for the ground state of a Hamiltonian ##H_0##, where the eigenvalue at the ground state is ##\hbar \omega##. The first-order energy shift is determined to be zero due to the expectation value of the perturbing Hamiltonian in the unperturbed state. The main challenge arises in applying the formula for the second-order energy shift, specifically in identifying the correct states and matrix elements. The user initially struggles with the notation and the role of the index k, which corresponds to states other than the ground state. Ultimately, the user resolves their confusion and expresses gratitude for the assistance.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Find the non leading vanishing term to the ground state
Relevant Equations
Perturbation theory
The eigenvalue for this ##H_0## is given by ##\hbar \omega(n+1) ; (n_x+n_y = n)##

At the ground state, ##nx = ny = 0## so the eigenvalue is simply ##\hbar\omega##

Next we turn the perturbation potential on and I know that the first order shift in the energy is the expectation value of the perturbing Hamiltonian in the unperturbed state corresponding to that energy.

##E_n^1 = \braket{nx,ny|\hat H_1|nx,ny} = \frac {\lambda \hbar}{2m\omega}[\braket{0,0|a_xa_y+a_xa_y^\dagger + a_x^\dagger a_y + a_x^\dagger a_y^\dagger|0,0} = 0 ##

From here, I am to calculate the second order energy shift of the ground state.

I am having trouble applying the formula,

##\sum_{k\neq n} \frac{|\braket{k|\hat H_1|n}|^2}{E_n^0-E_k^0}##

For this problem nx and ny = 0 in the ground state
##\sum_{k\neq 0,0} \frac{|\braket{k|\hat H_1|0,0}|^2}{E_{0,0}^0-E_k^0}##
I can express ##\hat H_1##

##\sum_{k\neq 0,0}(\frac {\lambda \hbar}{2m\omega})^2 \frac{|\braket{k|\hat x \hat y|0,0}|^2}{E_{0,0}^0-E_k^0}##

I have trouble understand what to do next in this problem. Im not really sure what K would be, I know it just be 0,0 which is what n is.
 
Physics news on Phys.org
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
 
vanhees71 said:
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
My apologies, I thought I attached a screenshot of the problem but I might have accidentally deleted it. I figured out the problem though. Thank you!
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...