Leading non-vanishing term of the groundstate for ##H_0##

  • Thread starter Thread starter guyvsdcsniper
  • Start date Start date
  • Tags Tags
    Term
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Find the non leading vanishing term to the ground state
Relevant Equations
Perturbation theory
The eigenvalue for this ##H_0## is given by ##\hbar \omega(n+1) ; (n_x+n_y = n)##

At the ground state, ##nx = ny = 0## so the eigenvalue is simply ##\hbar\omega##

Next we turn the perturbation potential on and I know that the first order shift in the energy is the expectation value of the perturbing Hamiltonian in the unperturbed state corresponding to that energy.

##E_n^1 = \braket{nx,ny|\hat H_1|nx,ny} = \frac {\lambda \hbar}{2m\omega}[\braket{0,0|a_xa_y+a_xa_y^\dagger + a_x^\dagger a_y + a_x^\dagger a_y^\dagger|0,0} = 0 ##

From here, I am to calculate the second order energy shift of the ground state.

I am having trouble applying the formula,

##\sum_{k\neq n} \frac{|\braket{k|\hat H_1|n}|^2}{E_n^0-E_k^0}##

For this problem nx and ny = 0 in the ground state
##\sum_{k\neq 0,0} \frac{|\braket{k|\hat H_1|0,0}|^2}{E_{0,0}^0-E_k^0}##
I can express ##\hat H_1##

##\sum_{k\neq 0,0}(\frac {\lambda \hbar}{2m\omega})^2 \frac{|\braket{k|\hat x \hat y|0,0}|^2}{E_{0,0}^0-E_k^0}##

I have trouble understand what to do next in this problem. Im not really sure what K would be, I know it just be 0,0 which is what n is.
 
Physics news on Phys.org
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
 
vanhees71 said:
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
My apologies, I thought I attached a screenshot of the problem but I might have accidentally deleted it. I figured out the problem though. Thank you!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top