Leading non-vanishing term of the groundstate for ##H_0##

  • Thread starter Thread starter guyvsdcsniper
  • Start date Start date
  • Tags Tags
    Term
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Find the non leading vanishing term to the ground state
Relevant Equations
Perturbation theory
The eigenvalue for this ##H_0## is given by ##\hbar \omega(n+1) ; (n_x+n_y = n)##

At the ground state, ##nx = ny = 0## so the eigenvalue is simply ##\hbar\omega##

Next we turn the perturbation potential on and I know that the first order shift in the energy is the expectation value of the perturbing Hamiltonian in the unperturbed state corresponding to that energy.

##E_n^1 = \braket{nx,ny|\hat H_1|nx,ny} = \frac {\lambda \hbar}{2m\omega}[\braket{0,0|a_xa_y+a_xa_y^\dagger + a_x^\dagger a_y + a_x^\dagger a_y^\dagger|0,0} = 0 ##

From here, I am to calculate the second order energy shift of the ground state.

I am having trouble applying the formula,

##\sum_{k\neq n} \frac{|\braket{k|\hat H_1|n}|^2}{E_n^0-E_k^0}##

For this problem nx and ny = 0 in the ground state
##\sum_{k\neq 0,0} \frac{|\braket{k|\hat H_1|0,0}|^2}{E_{0,0}^0-E_k^0}##
I can express ##\hat H_1##

##\sum_{k\neq 0,0}(\frac {\lambda \hbar}{2m\omega})^2 \frac{|\braket{k|\hat x \hat y|0,0}|^2}{E_{0,0}^0-E_k^0}##

I have trouble understand what to do next in this problem. Im not really sure what K would be, I know it just be 0,0 which is what n is.
 
Physics news on Phys.org
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
 
vanhees71 said:
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
My apologies, I thought I attached a screenshot of the problem but I might have accidentally deleted it. I figured out the problem though. Thank you!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top