Leading non-vanishing term of the groundstate for ##H_0##

  • Thread starter Thread starter guyvsdcsniper
  • Start date Start date
  • Tags Tags
    Term
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Find the non leading vanishing term to the ground state
Relevant Equations
Perturbation theory
The eigenvalue for this ##H_0## is given by ##\hbar \omega(n+1) ; (n_x+n_y = n)##

At the ground state, ##nx = ny = 0## so the eigenvalue is simply ##\hbar\omega##

Next we turn the perturbation potential on and I know that the first order shift in the energy is the expectation value of the perturbing Hamiltonian in the unperturbed state corresponding to that energy.

##E_n^1 = \braket{nx,ny|\hat H_1|nx,ny} = \frac {\lambda \hbar}{2m\omega}[\braket{0,0|a_xa_y+a_xa_y^\dagger + a_x^\dagger a_y + a_x^\dagger a_y^\dagger|0,0} = 0 ##

From here, I am to calculate the second order energy shift of the ground state.

I am having trouble applying the formula,

##\sum_{k\neq n} \frac{|\braket{k|\hat H_1|n}|^2}{E_n^0-E_k^0}##

For this problem nx and ny = 0 in the ground state
##\sum_{k\neq 0,0} \frac{|\braket{k|\hat H_1|0,0}|^2}{E_{0,0}^0-E_k^0}##
I can express ##\hat H_1##

##\sum_{k\neq 0,0}(\frac {\lambda \hbar}{2m\omega})^2 \frac{|\braket{k|\hat x \hat y|0,0}|^2}{E_{0,0}^0-E_k^0}##

I have trouble understand what to do next in this problem. Im not really sure what K would be, I know it just be 0,0 which is what n is.
 
Physics news on Phys.org
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
 
vanhees71 said:
It would tremendously help us to help you, if you could give a complete statement of the problem under consideration!
My apologies, I thought I attached a screenshot of the problem but I might have accidentally deleted it. I figured out the problem though. Thank you!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top