provolus
- 17
- 0
Reading the Landau's "The classical theory of fields" (chapter 2, section 9 ) I have some doubts in explaining the steps in derivig the formula for the variation of the action for the relativistic free particle http://books.google.it/books?id=QIx...age&q="to set up the expression for"&f=false". Given the invariant element of measure:
ds=\sqrt{dx_idx^i}
where x^i ( x_i ) are the four contravariant (covariant) coordinates which parametrize the world line of the free particle, I have to vary respect x^i, that is I make the variation \delta x^i. So my doubts are about the second step of the formula before the 9.10, that is why:
\delta(ds)=\frac{d x_i \delta d x^i}{ds}
is obtained, instead of (IMH and erroneous O):
\delta(ds)=\frac{d x_i \delta d x^i}{2 \cdot ds}
?
Can someone be so kind to show me the steps?
ds=\sqrt{dx_idx^i}
where x^i ( x_i ) are the four contravariant (covariant) coordinates which parametrize the world line of the free particle, I have to vary respect x^i, that is I make the variation \delta x^i. So my doubts are about the second step of the formula before the 9.10, that is why:
\delta(ds)=\frac{d x_i \delta d x^i}{ds}
is obtained, instead of (IMH and erroneous O):
\delta(ds)=\frac{d x_i \delta d x^i}{2 \cdot ds}
?
Can someone be so kind to show me the steps?
Last edited by a moderator: