nateHI
- 145
- 4
Homework Statement
Suppose that f is a nonnegative Lebesgue measurable function and E is a measurable set.
Let A = {x ∈ E : f(x) = ∞}. Show that if ##\int_E f dλ < ∞## then ##λ(A) = 0##
Homework Equations
The Attempt at a Solution
[/B]
Let ##\phi(x)=\sum_{x\in A}a_i\mathcal{X}_{A_i}(x)## so by the construction of ##A##, ##a_i=\infty## for all ##i## and ##A=\cup A_i##
Then
##\infty\ge\int_E f dλ= \int_{E-A}f dλ+\int_Af dλ=\int_{E-A}f dλ+\int \phi(x)=\int_{E-A}f dλ+\sum a_i \lambda(A_i)##
##\implies \lambda(A_i)=0 ## for all i
##\implies \lambda(A)=0##
This seems simple and intuitive so I'm worried I'm missing something.