LeGrange Multipliers Finding critical points of function

Saladsamurai
Messages
3,009
Reaction score
7

Homework Statement



Find the critical points of f(x,y)=x+y^2 subject to the constraint g(x)=x^2+y^2=1



Homework Equations


\nabla f=\lambda\nabla g
g(x,y)=1



The Attempt at a Solution



f_x=1=2\lambda*x\Rightarrow x=\frac{1}{2\lambda}

f_y=2y=2\lambda*y\Rightarrow y(\lambda-1)=0\Rightarrow y=0 \\ or\\ \lambda=1

x^2+y^2=1

I am a little confused as to where I go from here?
 
Physics news on Phys.org
Saladsamurai said:

Homework Statement



Find the critical points of f(x,y)=x+y^2 subject to the constraint g(x)=x^2+y^2=1



Homework Equations


\nabla f=\lambda\nabla g
g(x,y)=1



The Attempt at a Solution



f_x=1=2\lambda*x\Rightarrow x=\frac{1}{2\lambda}

f_y=2y=2\lambda*y\Rightarrow y(\lambda-1)=0\Rightarrow y=0 \\ or\\ \lambda=1

x^2+y^2=1

I am a little confused as to where I go from here?

You've done the hard part. If y= 0, then \lambda doesn't matter: Find x from x2+ y2= 1. If \lambda= 1, then x= 1/2 and you can find y from x2+ y2= 1.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
4
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
8
Views
2K
Replies
9
Views
2K
Replies
10
Views
1K
Replies
6
Views
1K
Back
Top