Lengths perpendicular to relative motion are unchanged

Mosis
Messages
53
Reaction score
0
This has been bothering me for a long time. I can see that it's "obviously" true but I'm having trouble arguing it rigorously from what I know about special relativity (i.e. I "believe it" but when I try to (hypothetically) explain it to someone, I can't do so convincingly.)

I first found this problem in Hartle's book, in which he writes:

Imagine two meter sticks, one at rest and the other moving along an axis perpendicular to the first and perpendicular to its own length. There is an observer riding at the center of each meter stick.

(a) Argue that the symmetry about the x-axis implies that both observers will see the ends of the meter sticks cross simultaneously and that both observers will therefore agree if one meter stick is longer than the other.

(b) Argue that the lengths cannot be different without violating the principle of relativity.


So assuming that the observers will agree on which stick is shorter, then the lengths cannot be different. Suppose the observer "at rest" sees a length contraction of the other stick. Then both observers agree that the "moving" stick is contracted. However, the observer in motion is equally entitled to consider himself "at rest," in which case he should say (by the principle of relativity) that the other stick is contracted - contradicting the fact that both observers agree.

The part I'm having trouble with is why the meter sticks crossing simultaneously imply both observers must agree on which stick is shorter. I mean, in the case where the sticks are moving parallel to one another, the relativity of simultaneity in the measurements of lengths is precisely what gives length contraction with each observer claiming that the other stick is contracted, and in this case it's precisely the observers agreeing on which stick is "really" shorter that allows us to conclude that the lengths are not contracted. How does this difference come into the argument, though? What am I missing?
 
Physics news on Phys.org
Endpoints of stick A: (0,0,0) and (1,0,0).
Endpoints of stick B: (0,0,vt) and (0,b,vt) (...where b is 1 m, but we're not supposed to assume that)

This is what you described, right?

This situation is perfectly symmetrical. The observers sitting on the sticks both see another stick, oriented in the up direction, moving to the left (if we imagine that both observers are facing the other stick at t=0 and that A considers "up" to be in the positive y direction while B considers "up" to be in the positive x direction).
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top