LHC, supersymmetry and strings

If LHC finds supersymmetry, will you find string theory more appealing?


  • Total voters
    19
Demystifier
Science Advisor
Insights Author
Messages
14,567
Reaction score
7,160
One of the things that LHC will experimentally search for are supersymmetric partners of the Standard-Model particles. Maybe it will found them, maybe it will not. But what if it will? The existence of supersymmetry does not imply the existence of superstrings. However, string theory is consistent only if it is also supersymmetric. In other words, string theory implies supersymmetry, that is, the existence of supersymmetric partners.
Thus, if LHC finds supersymmetry, one of the predictions of string theory will be experimentally confirmed. If that happens, will you give more credit to string theory? Will you start to think that string theory is more likely to be correct than you thought so far?
 
Physics news on Phys.org
Yes, I'd find it (a little) more appealing. But I do not agree with you that ST predicts supersymmetry. As far as I understand it, supersymmetry is a precondition for constructing ST. I'd really find it much more appealing if ST could offer clear and testable predictions, that is, if it could be falsifiable.
 
ccdantas said:
I do not agree with you that ST predicts supersymmetry. As far as I understand it, supersymmetry is a precondition for constructing ST.

Can you clarify the difference between prediction and precondition?

ccdantas said:
Yes, I'd find it (a little) more appealing. I'd really find it much more appealing if ST could offer clear and testable predictions, that is, if it could be falsifiable.

So if astronomers discovered a gigantic cosmic string (this is edward witten's favourite way of varifying string theory) you would be only a bit less dismissive of string theory unless someone could provide a way to falsify string theory?
 
josh1 said:
So if astronomers discovered a gigantic cosmic string (this is edward witten's favourite way of vE?rifying string theory)

So now Witten is astronomer? I'd thought his favorite way should be to find some proof of 11-dim gravity in a way such that the extra seven dimensions are acted by SU(3)xSU(2)xU(1).
 
josh1 said:
Can you clarify the difference between prediction and precondition?

precondition: a condition that must be fulfilled before other things can happen or be done
prediction: an indication of the outcome of an experiment in a laboratory setting (or based on the observation of a phenomenon in nature)

josh1 said:
So if astronomers discovered a gigantic cosmic string (this is edward witten's favourite way of varifying string theory) you would be only a bit less dismissive of string theory unless someone could provide a way to falsify string theory?

I'm not waiting for the day that ST will be falsified. I'm only expecting that ST can be formulated as a falsifiable theory, like any theory is supposed to be. There is a big difference between the two. Think about it.
 
I think I objected to this in another thread. If you take the view that ST really isn't a theory (that makes straight predictions), but rather a framework with contains many possible (but somewhat specific) theories or types of theories, then the falsification should be applied to the framework, because there is no theory. It's a framework of theories.

So what does falsification of a framework possibly mean?

Perhaps that no successful theory exist in the framework? seems reasonable?

But then the "string strategy" really is seriously incomplete unless this framework is equipped with a method or principle that allows theories to evolve or be selected in the framework.

Strongly constrained but pre-tuned (narrowed down) frameworks can do with a random selection and still be very fit, but as the framework inflates in complexity the entire strategy stalls unless there is a guiding principle. That's my opinion at least.

Given we have such strategy, and the framework as such is good, it seems the falsification should be replaced by a quantiative measure of support, where a good strategy is a "quick learning" strategy or a "quick selection".

I figure that in this way, the efficient strategy (good framework and good adaption) is the winning one that will dominate, all others will be less frequent.

I think this applies not only to human endavours but also to how evolution in nature works. The poppian thinking of falsification feels sort of out of date.

/Fredrik
 
ccdantas said:
I'm not waiting for the day that ST will be falsified. I'm only expecting that ST can be formulated as a falsifiable theory, like any theory is supposed to be. There is a big difference between the two. Think about it.
But string theory is already formulated as a falsifiable theory. For example, it clearly predicts that there are particles with masses of the order of the Planck mass. The fact that experimentalists are not able to verify this because their accelerators are not strong enough does not make string theory unfalsifiable. If such energies were experimentally available but such particles were still unseen, that would be a clear experimental proof that string theory was wrong.

The problem, of course, is to find a LOW energy prediction of string theory. But LQG, for example, suffers from the same problem. I do not understand why it is considered a drawback of string theory but not of LQG. Double standard?
 
Last edited:
ccdantas said:
precondition: a condition that must be fulfilled before other things can happen or be done prediction: an indication of the outcome of an experiment in a laboratory setting (or based on the observation of a phenomenon in nature)

If supersymmetry is as you say a “precondition for constructing string theory”, string theory requires supersymmetry to actually exist in nature to make sense. If supersymmetry doesn`t exist in nature, string theory can never make any sense as a physical theory since it is as you say a “precondition for constructing string theory”. Therefore should one not say that string theory does indeed predict supersymmetry, since supersymmetry is as you say a “precondition for constructing string theory”?

ccdantas said:
There is a big difference between the two. Think about it.

IMHO, there is no substantial difference between the two in how you’re using them here.

ccdantas said:
I'm only expecting that ST can be formulated as a falsifiable theory, like any theory is supposed to be.

Suppose a theory was falsifiable in principle, but not in practice. Would this satisfy you, because it’s possible that this may turn out to be the case. It`s even logically possible that there are correct theories of our universe that are not falsifiable even in principle. It may turn out that the only basis on which our belief in a theory can ever rest is it’s explanatory power. I hope this does not turn out to be the case, but how can we be sure it won`t?

Is this the main source of your unease with string theory as far as you understand it?
 
Last edited by a moderator:
  • #10
Demystifier said:
The problem, of course, is to find a LOW energy prediction of string theory. But LQG, for example, suffers from the same problem. I do not understand why it is considered a drawback of string theory but not of LQG. Double standard?

I think it is a problem for both: ST and LQG. And I never said otherwise.

Although I find LQG approaches more interesting (because my background mostly comes from GR, not particle physics), it is not the case that I find LQG less problematic than ST.

Actually, if I would go to work on quantum gravity, I'd study both approaches (their main fundamentals), find useful tools and ideas from them, but I'd also think about other ideas. In special, I'd go far back into their ontological status. I'm starting to feel like I am a 'structural realist' when it comes to how our scientific knowledge evolves over difficult matters.
 
  • #11
josh1 said:
Suppose a theory was falsifiable in principle, but not in practice.

Well, I suppose there are many currently accepted definitions of what science is.

I am a professional scientist (an astrophysicist turned into software engineer turned into condensed matter physicist) and use the traditional scientific method in my daily work.

But I respect other interpretations. So it's fine for me if there are people working under the frame of 'a theory falsifiable in principle'. I myself crossed a bit that territory some times.
 
  • #12
One thing that is important is to have a clear idea of what you are doing. Is it science or not? What is science?

http://egregium.wordpress.com/2007/06/11/what-is-science-for-me/

http://egregium.wordpress.com/2007/06/08/what-is-science-for-you-up-to-50-words/
 
Last edited by a moderator:
  • #13
ccdantas said:
I am...an astrophysicist turned into software engineer turned into condensed matter physicist

Were these first or second order phase transitions? :smile:
 
  • #14
Demystifier said:
...
The problem, of course, is to find a LOW energy prediction of string theory. But LQG, for example, suffers from the same problem. I do not understand why it is considered a drawback of string theory but not of LQG. Double standard?

Demy, isn't it true that string is a framework within which various theories with various theories might be constructed? Perhaps it would help to restate the problem. It might be too much to ask that there be a collective prediction that would refute the whole philosophy. But I leave that up to you since you know more about string thinking.

In any case I would say that LQG stands for a bunch of (different but related) approaches.
Different theories within the LQG cluster might make predictions and be falsifiable. The problem (as I would restate it in the LQG case) is to take one particular approach and see if you can refute it, experimentally or otherwise.

For example the approach that Lee Smolin has been working on since 2005 (and a halfdozen other people) depends critically on 4D. If evidence of extra dimension were seen this would shoot it down.

It also has only the ordinary particles---no room for partners. So if evidence of SUSY were found, that would shoot it down.
 
Last edited:
  • #15
marcus said:
Demy, isn't it true that string is a framework within which various theories with various theories might be constructed?

In any case I would say that LQG stands for a bunch of (different but related) approaches.
I would say there is no much qualitative difference between strings and loops in that regard. The difference is only quantitative, in the sense that the string approach contains a much larger number of (different but related) possibilities. This is the price payed for the fact that the string program is much more ambitious than the loop program.

If the ONLY goal of the string approach was to have a consistent quantum gravity, then I would certainly prefer loops over strings. But the string approach is much more than a quantum theory of gravity.
 
Last edited:
  • #16
Anyway, marcus, would YOU find strings more appealing if supersymmetry would be found by LHC?
 
  • #17
Demystifier said:
...This is the price payed for the fact that the string program is much more ambitious than the loop program.

If the ONLY goal of the string approach was to have a consistent quantum gravity, then I would certainly prefer loops over strings. But the string approach is much more than a quantum theory of gravity.

I didn't realize that you think the "loop program" is only to make a consistent quantum gravity. If you think that, then naturally you would suppose that the string program is much more ambitious.
 
  • #18
marcus said:
...isn't it true that string is a framework within which various theories with various theories might be constructed?

As has been repeated many times in this forum, string theory appears to be based on a unique but as of yet undiscovered set of principles with different solutions describing different phenomenologies.

marcus said:
…LQG stands for a bunch of (different but related) approaches.

I too use the term LQG this way. But I’m unaware of any serious LQG analog of the developments in string theory that suggest that these approaches are parts of the same theory. This shouldn’t be surprising though since IMHO research in LQG has always been characterized much more by free-wheeling invention than natural discovery.
 
Last edited by a moderator:
  • #19
josh1 said:
As has been repeated many times in this forum, string theory appears to be based on a unique but as of yet undiscovered set of principles with different solutions describing different phenomenologies.
Are you talking about dualities and the hypothetic M-theory? I think it is more honest to say that "it is believed" or that "there is some evidence", rather than "appears to be".
 
  • #20
Demystifier said:
Are you talking about dualities and the hypothetic M-theory?

Why? Have you ever heard of anyone arguing for the uniqueness of string theory on some other basis?

Demystifier said:
I think it is more honest to say that "it is believed" or that "there is some evidence", rather than "appears to be".

I disagree.
 
  • #21
marcus said:
I didn't realize that you think the "loop program" is only to make a consistent quantum gravity.
What are the other goals of the loop program?
 
  • #22
josh1 said:
Have you ever heard of anyone arguing for the uniqueness of string theory on some other basis?
No. But have you ever heard of anyone saying that there is a PROOF that the single unifying M-theory exists?
 
  • #23
josh1 said:
As has been repeated many times in this forum, string theory appears to be based on a unique but as of yet undiscovered set of principles with different solutions describing different phenomenologies.

That is a nice idea. When the "unique but as of yet undiscovered" set of principles is discovered then there will actually be a string theory (not just a philosophy or ideology or intellectual framework). And THEN it may actually be possible to test the whole shebang and falsify it.

I like that prospect and hope you are right. Regretfully, so far it only "appears" to be based on some unknown but imagined set of principles, as you say.

I too use the term LQG this way. But I’m unaware of any serious LQG analog of the developments in string theory that suggest that these approaches are parts of the same theory...

There is Martin Reuter's QEG (asymptotic safe quantum gravity). There is Renate Loll CDT. There is Lee Smolin dynamical knotted graph combination of particles and geometry. There is Laurent Freidel combination of spinfoam and Feynman diagram (also putting matter and geometry in one format.) There is the approach pursued by Derek Wise and others (matter and geometry). Then there is the current attempt to merge Alain Connes NCG Standard Model with something like the conventional LQG setup.

Many of the approaches being actively pursued combine matter (e.g. the Standard Model basket of particles) with geometry. Some, like Reuter QEG do not. There is no easy way to see them all as related. Sometimes people point out analogies and generalize. Daniele Oriti has an approach which subsumes several different approaches.

But I would tend to agree with Josh that there is no one "LQG program" that one can describe. Also it seems to me that the different lines of research presented say at Loops '07 are exceedingly ambitious. Look at Garrett Lisi's work for example. Or Lee Smolin's.

So I would tend to disagree with Demy here---because he talks about a single "LQG program" and seems to think it does not involve the Standard Model. All these different people do not have a single program, I would say, but at least the majority clearly have a single GOAL.
That involves defining a quantum state of geometry-and-matter.

I cannot speak for the individual programs of course but personally I do think several of these current efforts would be destroyed if evidence were found of extra spatial dimensions. It would not be simply a matter of changing a few numbers and presto our theory applies to higher dimension.
 
  • #24
Demystifier said:
What are the other goals of the loop program?

There is no one single "loop program", Demy, as far as I know. There are the various research lines presented at the Loops '07 conference. The common goal---please read my preceding post #23---of several of the most active lines of research seems to be a quantum theory of geometry and matter. Defining a dynamical state of geometry+matter.
 
Last edited:
  • #25
marcus said:
That is a nice idea. When the "unique but as of yet undiscovered" set of principles is discovered then there will actually be a string theory (not just a philosophy or ideology or intellectual framework).

Er…this isn’t exactly what I had in mind (I'm being nice here. In fact I'm being very very nice here).

marcus said:
Regretably…it only "appears" to be based on some unknown but imagined set of principles, as you say.

It’s not merely “appearance”! This was and continues to be the conclusion drawn from an extremely powerful series of discoveries about nonperturbative string theory initiated by witten in the early nineties and developed in great detail over the next decade. Nobody has ever found any inconsistency in any of these developments and the view that the original conclusions drawn from this work about the uniqueness of string theory are wrong in no way represent the mainstream attitude of string theorists towards their field. Just look at any of the recent textbooks on the subject since these reflect the standard views towards string theory and explain the results that are currently viewed as the standard ones in the field.

What is “regrettable” is that there’s really no substitute for a detailed understanding of these discoveries and their elaboration over the last decade to convey the reason why the attitude of string theorists continues to be so positive despite the fields current challenges. Moreover, in addressing these challenges there have already been great advances that needed to be made in any event. One very important one is the discovery of the idea of flux compactification which shows how to stabilize all of the moduli that characterize a given solution’s associated phenomenological content and do so in a way that stably breaks supersymmetry.

marcus said:
… I do think several of these current efforts would be destroyed if evidence were found of extra spatial dimensions.

The same with the discovery of supersymmetry, as I believe you recently mentioned.
 
Last edited by a moderator:
  • #26
Demystifier said:
... the string program is much more ambitious than the loop program.

If the ONLY goal of the string approach was to have a consistent quantum gravity, then I would certainly prefer loops over strings...

Smolin's group represents a considerable part of loop community research. We have a thread here at PF about the two recent papers. "Matter as twists in geometry"
https://www.physicsforums.com/showthread.php?t=190053

the goal is to determine the fundamental degrees of freedom describing space and particles so that one gets a dynamical quantum state of geometry and matter

Arguably that goal is more ambitious, rather than less----because the competition only models particles, it doesn't have a quantum state of spatial geometry.

Demy, you brought up the comparison of different research programs' ambitiousness and I'm glad you did because I think it is an important point for us to pursue. You indicate that ambitiousness is one thing that determines how you rate the various research lines.

So I should probably make explicit what Smolin's group is working on. it is a natural extension of LQG spin networks to include matter. A PF member named lqg is one of the people involved and he posted here recently. The spin network in question is a four-valent ball-and-tube network which behaves as if it is embedded in a 3D manifold. The dimensionality is critical, because the network must be able to have just those knots which are possible in 3D. (These would come undone if it were embedded in space of 4D.) Essentially it is a topological theory of matter. Certain topological numbers are conserved and these may correspond to particle quantum numbers.

Naturally I am not claiming that this approach is GOOD or likely to SUCCEED or that it is the FIRST topological theory of matter. Those are separate issues. All I am doing now is to point out that the spin network is a time-honored way to describe the quantum state of spatial geometry, in the loop community, and what is being investigated is how to make a spin network also serve as a theory of matter.

The four-valent ball and tube networks evolve by Pachner moves. This is their time-evolution. As far as I know the researchers have not yet assigned amplitudes to different Pachner moves, so they are not at the point of being able to write a path-integral. But one can see the goal and the direction very clearly: they want a quantum dynamics of geometry+matter (represented by a single object).

This research line is not the only currently active one that aims at this goal. So as to keep this post short I will save parallel approaches for another time.
 
  • #27
Marcus, thank you for pointing out to me that the loop program is wider than I thought.
Is there a kind of a review (not too technical if possible) of various such beyond-gravity achievements of the loop approach?
 
  • #28
I'm sure Marcus will answer that soon. I don't know of any review summarizing the various approaches in the loop program, but I know of an upcoming book with various contributions to the program (including some outside the program) that Oriti is editing ("Approaches to Quantum Gravity: Towards a New Understanding of Space, Time and Matter"). Some chapters are available through the arxiv.

http://arxiv.org/find/all/1/co:+oriti/0/1/0/all/0/1
 
Last edited:
  • #29
  • #30
Oh, now I see that you are interested in the "beyond-gravity achievements" of the program. I don't know whether you can specifically find those in the papers that I have indicated. I'll wait for Marcus' response...
 
  • #31
I am not familiar with beyond-gravity results (as far as I can tell, the drawback is that one has to put matter in by hand), so I'd only like to comment on different ambitions for quantum gravity. String theory (also string field theory) needs a background (not necessary Minkowski), and as such can not be used to study dynamics in quantum gravity. This is not only a mathematical drawback; I think the limitations for studying the physics are often overlooked. So, only looking at gravity, the loop program is much more ambitious.
 
  • #32
Demystifier said:
No. But have you ever heard of anyone saying that there is a PROOF that the single unifying M-theory exists?

Yes! Originally there where five known string theories. What witten showed was that the these five theories together with an additional eleven-dimensional theory where in fact all related by a set of dualities in a way that clearly shows that rather than being separate theories, they where actually just solutions of a unique underlying theory. More generally, these solutions are actually just corners of a larger space of solutions parametrized by massless Lorentz scalars called moduli and that the unique theory underlying the six known corners of moduli space actually underlies all of moduli space as well as solutions unrelated to the others by the continuous variation of moduli. Discovering what the principles of this unique theory are is the goal that drives all of string theory research. That there is such an underlying theory shouldn’t be too much of a shock to anyone who knows that there are no freely adjustable parameters whatsoever in string theory. In particular, the couplings of all the known interactions are not inserted as constants as they are in conventional particle physics based on QFT (or the immirzi-parameter in LQG), but are rather controlled dynamically in string theory by the vacuum expectation value of one of the moduli called the dilaton.

Having said this however, I think you might be very interested to know that there is one very esteemed string theory researcher named Tom Banks who believes that it is incorrect to view different points in moduli space as solutions of the same unique theory. His argument is based on the idea that theories should ultimately be distinguished from each other in terms of their fundamental degrees of freedom, which experience working in terms of QFT and the renormalization group suggests are always to be found at UV fixed points. He then argues that different solutions will in general have different UV fixed points and so should be regarded as different theories. But even so, these different “theories” are still related to each other as I’ve explained. He is the only one I know of that has argued for this point of view and it has in any event never been particularly influential.
 
Last edited by a moderator:
  • #33
eendavid said:
String theory (also string field theory) needs a background (not necessary Minkowski), and as such can not be used to study dynamics in quantum gravity.
Not necessarily. Perhaps gravity at the fundamental level really is not geometry, but a spin-2 field on a Minkowski spacetime. The Einstein equation, of course, suggests a different picture, but maybe the Einstein equation is just an approximation.
 
  • #34
josh1 said:
Yes! Originally there where five known string theories. What witten showed was that the these five theories together with an additional eleven-dimensional theory where in fact all related by a set of dualities in a way that clearly shows that rather than being separate theories, they where actually just solutions of a unique underlying theory. More generally, these solutions are actually just corners of a larger space of solutions parametrized by massless Lorentz scalars called moduli and that the unique theory underlying the six known corners of moduli space actually underlies all of moduli space as well as solutions unrelated to the others by the continuous variation of moduli. Discovering what the principles of this unique theory are is the goal that drives all of string theory research. That there is such an underlying theory shouldn’t be too much of a shock to anyone who knows that there are no freely adjustable parameters whatsoever in string theory. In particular, the couplings of all the known interactions are not inserted as constants as they are in conventional particle physics based on QFT (or the immirzi-parameter in LQG), but are rather controlled dynamically in string theory by the vacuum expectation value of one of the moduli called the dilaton.
If you take a new textbook or review of string theory, you will still find the derivation of 5 different string theories. You will not find a derivation of these 5 theories from a single unified theory. Yes, you will find the derivation of the dualities between them. But some of these dualities are present only on some specific topological backgrounds or only in some specific limits of the coupling constants.

Roughly speaking, the fact that
f(x)=x
and
g(x)=x+x^2
are the same for small x does prove that f(x) and g(x) are different corners of the same theory.
(For example, such a theory could be
M(x)=x+cx^2
where c is arbitrary.)

Of course, in string theory the relations are much more stringent than in the simple toy model above, which is very suggestive. Still, there is no proof that the unifying M-theory exists. If you disagree, show me the paper that claims the opposite!
 
  • #35
josh1 said:
That there is such an underlying theory shouldn’t be too much of a shock to anyone who knows that there are no freely adjustable parameters whatsoever in string theory.
But it is a shock. If I formulate, e.g., a heterotic E8XE8 string theory for a small coupling constant, one naively expects that a large coupling constant limit of it will still be a heterotic E8XE8 string theory, not some other string theory.
 
  • #36
Josh1, as a counter example see also my
http://xxx.lanl.gov/abs/hep-th/0605250
which demonstrates that string theories that are T-dual to each other may not be equivalent at a more fundamental level. The point is that dualities show that SOME physical properties of dual theories are the same, but not ALL properties. In the case of T-duality, the shape of the string is also considered physical, which is certainly not the same for the T-dual strings.
 
Last edited:
  • #37
Demystifier said:
Josh1, as a counter example see also my
http://xxx.lanl.gov/abs/hep-th/0605250
which demonstrates that string theories that are T-dual to each other may not be equivalent at a more fundamental level. The point is that dualities show that SOME physical properties of dual theories are the same, but not ALL properties. In the case of T-duality, the shape of the string is also considered physical, which is certainly not the same for the T-dual strings.

I didn't mean to say that the properties of the theories are all the same, but just that they are all "formally" related by various dualities etc. The challenge is to understand why these different theories should be related in these very precise ways nonetheless. If all the theories represented by points in moduli space where the same physically, there would be no problem. So this whole thing is very mysterious in that we have a collection of theories which naively should have no right to be related to each other in such precise ways but apparently are. This was the shock witten gave the physics community in the early nineties and kicked off the so-called "second string revolution".
 
  • #38
josh1 said:
I didn't mean to say that the properties of the theories are all the same, but just that they are all "formally" related by various dualities etc. The challenge is to understand why these different theories should be related in these very precise ways nonetheless. If all the theories represented by points in moduli space where the same physically, there would be no problem. So this whole thing is very mysterious in that we have a collection of theories which naively should have no right to be related to each other in such precise ways but apparently are. This was the shock witten gave the physics community in the early nineties and kicked off the so-called "second string revolution".
With such a softened claim I fully agree. :approve:
 
  • #39
Demystifier said:
Marcus, thank you for pointing out to me that the loop program is wider than I thought.
Is there a kind of a review (not too technical if possible) of various such beyond-gravity achievements of the loop approach?

Hi Demy, we were talking about GOALS, weren't we? As I recall you indicated a preference for the string framework or philosophy which depended on your perception of it as more AMBITIOUS.

Demystifier said:
.. the string program is much more ambitious than the loop program.

If the ONLY goal of the string approach was to have a consistent quantum gravity, then I would certainly prefer loops over strings...

That is a really interesting issue. I want to get back to that and be more clear about it. I think that some of the approaches being worked on in the loop community are arguably more ambitious because they seek to find the fundamental degrees of freedom describing matter, and geometry as well.

I don't know anywhere in string writing where there is such a big goal, perhaps you can point me to something on the web----I mean a formalism aimed at being able to write down the quantum state of the universe--quantum state of global space or spacetime geometry (and matter).

As far as I know stringy formalism does not have a dynamical quantum state of geometry---except in a localized perturbative sense e.g. gravitons on a fixed background---or in a rather contrived setting with negative cosmological constant and things happening on a projection screen at infinity. But you may know better and can perhaps supply some links.

You asked about a REVIEW article. The best review is to take a look at the Loops '07 program. The plenary speaker list has representatives from almost the whole community. I suppose in 2008 we will finally see Oriti's book Approaches to Quantum Gravity: Towards a new understanding of space, time and matter(Cambridge).
It takes a book to adequately review the various approaches being worked on. But the quick overview is simple: look at the talks and abstracts of the annual conference.

http://www.matmor.unam.mx/eventos/loops07/

As you know, the Loop community is divided into many separate approaches. There are SEPARATE review articles for several of these approaches.
For QEG, look at the chapter which Percacci contributed to Oriti's book. It is on arxiv.
For CDT, google Renate Loll. I think there is also a chapter contributed to Oriti's book that is at arxiv.
For Smolin group's ball-and-tube, listen to Smolin's talk at Loops '07 which surveys the situation as of June 2007. But then refer to my PF thread "Matter as twists in geometry". I give links to two September 2007 papers by Wan and Smolin.
There is also Jesper Grimstrup's effort to put Connes Standard Model in a LQG-like context. He says he and his co-author are completing three papers that should be posted by the end of 2007, but there is no review. Grimstrup gave a talk at Loops '05 but not at Loops '07, if I remember right.
And I assume you know much of the rest---the spinfoam literature for example.

Some of these attempt a quantum dynamics of geometry PLUS detailed description of matter. Some of these approaches do NOT attempt that---they only are geometry plus nondescript generic matter fields. All these approaches are very different.

It would be very difficult to survey the whole field, except as Oriti is doing, in a book.

Demy you also brought up the issue of ACHIEVEMENTS
In English there is the saying "Don't count your chickens before they are hatched!"
You may have a Croatian equivalent (if I recall your arxiv research papers say Hrvoje Nikolic at a physics institute in Zagreb, forgive me if i have this wrong.)

In any case that is my attitude about "achievements" of various lines of theoretical research. there is no achievement until some philosophy or approach gives birth to an explicitly TESTABLE THEORY and even then the achievement is in doubt until it survives tests by which it could have been falsified.

I suppose the first test of Smolin's ball-and-tube will be with LHC, if extra dimensions are found at LHC energy then ball-and-tube is dead (topologically the underlying spatial manifold must be 3D or the knots come untied) and if SUSY is found at LHC energy then the approach is also dead because it depends on Sundance topological preon model which does not have SUSY. Smolin has bet the life of his approach on there being no SUSY and no extra dimensions. But I would still not count that as an "achievement" because the theory itself is not yet fully worked out. I am glad that you express an interest, however! I will keep you posted!

And if i hear of any kind of comprehensive review of the nonstring approaches besides Oriti's ("...Towards a new understanding of space, time, and matter") I will let you know as well. Please would you do the same, if you hear any relevant news.

Glad of your interest,

marcus
 
Last edited:
  • #40
In any case that is my attitude about "achievements" of various lines of theoretical research. there is no achievement until some philosophy or approach gives birth to an explicitly TESTABLE THEORY and even then the achievement is in doubt until it survives tests by which it could have been falsified.

So the fact that one can derive A/4 for black hole radiation in loops isn't an achievement?
 
  • #41
BenTheMan said:
So the fact that one can derive A/4 for black hole radiation in loops isn't an achievement?

It is a negative achievement if A/4 is wrong.
Corichi has found some quantum corrections to A/4 which should be there I believe.
Hanno Sahlmann has an interesting recent paper on that. Look him up on arxiv if you are interested, there is only one Sahlmann.

Some kind of achievement, i guess, most likely to string discredit---i.e. negative---but any evaluation has to wait for some empirical basis. Nobody gets Nobeled for pure theory :-)
 
  • #42
It will be a long time before anyone wins a nobel prize for quantum gravity, unless extra dimensions are shown to exist at LHC. Even then, there is some ambiguity about whether we're seeing, say, ADD gravity or something like technicolor or composite higgs. In many cases, the signatures are pretty hard to distinguish. This is even the case between a general SUSY model and some flavors of extra dimensional models.

I think that we won't know for sure that we have seen SUSY at LHC for quite a while, and there will be the inevitible arguments between the two camps.

On another note, I am convinced Connes is wrong about neutrino masses. The limits for a direct tree level yukawa coupling of neutrinos is 10^-8. My advisor gave a lecture on them today on neutrino masses, and this is directly from his mouth---which of course I already knew but couldn't convince you (martin) of this :) So you will have to convince me that Connes is talking about dimension 5 operators before I will believe that one can get the SM out of some non-commutative geometry.
 
  • #43
BenTheMan said:
...
On another note, I am convinced Connes is wrong about neutrino masses. The limits for a direct tree level yukawa coupling of neutrinos is 10^-8. My advisor gave a lecture on them today on neutrino masses, and this is directly from his mouth---which of course I already knew but couldn't convince you (martin) of this :) So you will have to convince me that Connes is talking about dimension 5 operators before I will believe that one can get the SM out of some non-commutative geometry.

Thanks so much for your thoughtful comments! About Connes' prediction---at least he made a definite prediction of what LHC would see based on his spectral geometry form of the Standard Model---and it would be very exciting if he were proven wrong.

Something is only real science, the saying goes, if it can be proven wrong---a real theory bets its life on an open question, and dies if something different happens from what it predicts. And real science in that sense may be, I think, the most exciting thing in life.
I will be delighted either way. Indeed if your advisor turns out right instead of Connes that would cause a bigger shakeup! Great thing about predictions is everybody wins whichever way it goes :biggrin:
 
  • #44
BenTheMan said:
I already knew but couldn't convince you (martin) of this

Who's martin?
 
  • #45
you mean 10^-8 *175 GeV = 1.75 KeV?? it seems a very high limit, isn't it?

Anyway, note that Alain did all of these predictions with some caution, because they depend both on the desert and of the postulate of imposing the result at GUT level, plus the uncentainty on deciding what level GUT is, as the model does not carry supersymmetry. The numerical predictions, including the running and all that, are important for Connes's group in order to prove themselves conversant with all the process, note we are speaking here of mathematicians doing physics. He was proud about reproducing all the appendix of Veltman's book with all the signs right!

The very important point in Connes work was that the introduction of massive neutrinos forces 6 mod 8 extra dimensions.
 
  • #46
arivero said:
The very important point in Connes work was that the introduction of massive neutrinos forces 6 mod 8 extra dimensions.

Barrett calls 6 mod 8 the "signature" and somebody, maybe you, remarked that it is the same as -2 (mod 8)
signature -2 is reminiscent of the signature (1, -1, -1, -1)

I was wondering which terminology you feel more comfortable with, "dimension" or "signature"?

================
I'm also wondering what figure has Connes actually predicted for the neutrino mass?

I am ashamed to say I have forgotten. I know he qualified it in various ways but forgetting about the qualifications, what was the actual figure, if there was one and you happen to remember? Or anybody, if they know?
================

Also didn't Connes predict a Higgs mass of 170 GeV? Is that reasonable? Do I have some orders of magnitude wrong?
 
Last edited:
  • #47
marcus said:
Barrett calls 6 mod 8 the "signature" and somebody, maybe you, remarked that it is the same as -2 (mod 8)
signature -2 is reminiscent of the signature (1, -1, -1, -1)
I was just repeating some talk in the dinner table, the suggestion was not mine. But it is a good one.

Also didn't Connes predict a Higgs mass of 170 GeV? Is that reasonable? Do I have some orders of magnitude wrong?
A point here is that if you postulate you can run up to GUT scale (or down from it), the Higgs is always in the order of magnitude of these 170.
 
  • #48
you mean 10^-8 *175 GeV = 1.75 KeV?? it seems a very high limit, isn't it?

whatever units you measure yukawa couplings in. The top yukawa coupling is about 1, so that seems right for a top mass at 175 GeV. 10^-8 or 10^-10 is the limit for a dirac neutrino.

The numerical predictions, including the running and all that, are important for Connes's group in order to prove themselves conversant with all the process, note we are speaking here of mathematicians doing physics. He was proud about reproducing all the appendix of Veltman's book with all the signs right!

Perhaps you should tell martin this---I told him that Connes model seemed wrong because he predicted neutrinos with the same mass as tau leptons, then he told me that I was wrong and I should go ask my advisor.

Who's martin?

Ahh. Right. This is a different forum:) Marcus has different names on different fora, so presumably this is not the original forum where we had a discussion about Connes' SM from NC geometry.
 
Last edited:
  • #49
BenTheMan said:
Perhaps you should tell martin this---I told him that Connes model seemed wrong because he predicted neutrinos with the same mass as tau leptons, then he told me that I was wrong and I should go ask my advisor.
Hmm I should check (it has been one year since I heard the lectures), but I believe that the model allowed for seesaw.
 
  • #50
Demystifier said:
With such a softened claim I fully agree. :approve:

I haven't "softened" my claim. I've explained to you what string theorists mean when they say that there is a unique theory underlying stringy physics as it's currently understood. There's just no way that these relations have no deeper physical meaning.

I also gave you tom banks point of view which I believe is more closely aligned with your own impressions and does indeed represent a more conservative position. But I also told you that his view is definitely the minority one. Nonetheless, banks is one of the worlds premier theoretical physicists and I learned a lot from his papers.
 
Back
Top