Light and Heat Generation of Elements

Click For Summary
The discussion centers on quantifying the proportions of light and heat energy generated from elements when a voltage is applied. It highlights that elements do not inherently produce light or heat unless involved in chemical or nuclear reactions. The conversation explores the possibility of using energy conservation principles to model the relationship between electrical energy and the resulting light and heat energy. It emphasizes that the geometry and resistance of materials, rather than the material itself, play a crucial role in determining energy conversion in applications like light bulbs. Ultimately, while different materials emit varying spectra at specific temperatures, the overall emission resembles a black-body spectrum, making material selection less critical for typical applications.
Legolaz
Messages
32
Reaction score
3
Hi forum,
Is there anyway to quantify the proportions of light and heat energy generated from an element?
I mean, is there a model which we can use to predict material energy conversion proportions when a voltage potential is applied to it.? Further, is the model able to predict material conversion capacities given only the atomic #, negativity or group?

Thank you.
 
Physics news on Phys.org
What do you mean with "light and heat energy generated from an element"? If you just leave any element on a table, in general it does not produce light or heat. If some chemical or nuclear reactions happen then it might do that, the details depend on the element then. Sure, it is possible to calculate that.

I don't see the relation to a voltage (where?).

What do you mean with "material conversion capacities"?
 
mfb said:
What do you mean with "light and heat energy generated from an element"? If you just leave any element on a table, in general it does not produce light or heat. If some chemical or nuclear reactions happen then it might do that, the details depend on the element then. Sure, it is possible to calculate that.

I don't see the relation to a voltage (where?).

What do you mean with "material conversion capacities"?

My apology for the lacking info, consider this simple presentation of what I meant (see figure)
simple%20circuit.gif

How much proportions of heat and light are being generated from the total dissipated energy of the load?
Is there a model which predicts how much proportions of heat is being generated and proportions light with relation to an intrinsic property of a material?

Law of Energy (Conservation of Energy) would help :

EE = LE+HE ; where EE - Electrical Energy, LE-Light Energy, HE-Heat Energy

Proportions are expressed simply as LE/EEx100%; HE/EEx100% vs. say conductivity or resistance of material (Classical and Stastical model perhaps)

The goal is to predict how much lumen and heat proportions on any material, one would either make as a heater or a light filament.
 
Last edited:
It mainly depends on the geometry of the wire in the light bulb and its resistance. The material does not matter much for typical light bulbs (as long as it does not melt, obviously). It does matter if you care about the lifetime, but that is a different question.
The emission is roughly a black-body spectrum, and this spectrum depends on temperature only. Higher temperatures give a higher fraction of visible light relative to heat (infrared light).
 
  • Like
Likes Legolaz
mfb said:
It mainly depends on the geometry of the wire in the light bulb and its resistance. The material does not matter much for typical light bulbs (as long as it does not melt, obviously). It does matter if you care about the lifetime, but that is a different question.
The emission is roughly a black-body spectrum, and this spectrum depends on temperature only. Higher temperatures give a higher fraction of visible light relative to heat (infrared light).

But different material lit different frequencies of spectrum at corresponding temperatures, right? Thus, there must be a material fit for its purpose, to give off light the most but less heat.
 
Legolaz said:
But different material lit different frequencies of spectrum at corresponding temperatures, right?
See above: it is a good approximation of a blackbody spectrum which is independent of the material.
Legolaz said:
Thus, there must be a material fit for its purpose, to give off light the most but less heat.
Sure, there are small differences, but other considerations like the lifetime of the device are more important.
 
  • Like
Likes Legolaz
Thread 'Unexpected irregular reflection signal from a high-finesse cavity'
I am observing an irregular, aperiodic noise pattern in the reflection signal of a high-finesse optical cavity (finesse ≈ 20,000). The cavity is normally operated using a standard Pound–Drever–Hall (PDH) locking configuration, where an EOM provides phase modulation. The signals shown in the attached figures were recorded with the modulation turned off. Under these conditions, when scanning the laser frequency across a cavity resonance, I expected to observe a simple reflection dip. Instead...

Similar threads

Replies
10
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K