Limit and diffirentiability of a function

  • Thread starter Thread starter lmedin02
  • Start date Start date
  • Tags Tags
    Function Limit
lmedin02
Messages
52
Reaction score
0

Homework Statement


For complex numbers f and g, and for 1<p<\infty we have \lim_{t\rightarrow 0}\dfrac{|f+tg|^p-|f|^p}{t}=|f|^{p-2}(\bar{f}g+f\bar{g}); i.e., |f+tg|^p is differentiable.

I would like to show that the above statement is true.


Homework Equations





The Attempt at a Solution



I have try several attempts in the direction of manipulating the convex function |x|^p. But no reasonable conclusions yet.
 
Physics news on Phys.org
So, I have made some progress by rewriting the problem and using L'hopitals rule. But I am still off by a factor of \dfrac{p}{2}.

rewriting: |f+tg|^2=f\bar{f}+tf\bar{g}+t\bar{f}g+t^2g\bar{g}

When I apply L'Hopitals rule I get \dfrac{p}{2}|f|^{p-2}(\bar{f}g+f\bar{g})
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top