Limit as x tends towards +infinity for cos(1/x) to be 1

  • Thread starter Thread starter grizz45
  • Start date Start date
  • Tags Tags
    Limit
grizz45
Messages
5
Reaction score
0
I have worked out the limit as x tends towards +infinity for cos(1/x) to be 1, as cos (1/infinity) would be cos(0) which is 1. However the answer in the book with the question says that the answer should be (0,3) and (3,+infinty)! Is this a misprint or have i gine drastically wrong?
 
Mathematics news on Phys.org


grizz45 said:
I have worked out the limit as x tends towards +infinity for cos(1/x) to be 1, as cos (1/infinity) would be cos(0) which is 1. However the answer in the book with the question says that the answer should be (0,3) and (3,+infinty)! Is this a misprint or have i gine drastically wrong?

Of course
\lim_{x \to \infty} \cos(1/x)
doesn't tend toward (0,3) and (3,infty) (how would that make any sense?). That is probably the answer to a different problem (have you checked the problem number and chapter number is correct?). Your idea is correct except for the fact that 1/infinity makes no sense, but since cos is continuous and defined in 0 you have:
\lim_{x \to \infty} 1/x = 0 \Rightarrow \lim_{x \to \infty} \cos(1/x) = \cos(0) = 1
so your answer is correct.
 


i have checked the problem number and everything...i think there is a massive misprint as i have done some other questions from the same section and the answers all seem to be wrong as there are of the same format as the answer in the first post!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top