Limit Calculation for Block Sliding on Lubricated Surface with Quadratic Drag

  • Thread starter Thread starter Jukai
  • Start date Start date
  • Tags Tags
    Drag Quadratic
AI Thread Summary
A block sliding on a lubricated surface experiences viscous resistance proportional to the speed raised to the 3/2 power. The problem requires demonstrating that the block cannot travel further than 2m(Vo^(1/2))/c, where c is the drag constant. Initial attempts to integrate the motion equations led to incorrect limits due to sign errors and missing factors. Correcting these mistakes, particularly the treatment of the viscous force and integration constants, reveals that the limit approaches the desired result. The final solution confirms the block's maximum travel distance under the given conditions.
Jukai
Messages
12
Reaction score
0

Homework Statement


A block of mass m slides on a horizontal surface that's been lubricated with a heavy oil so that the block suffers a viscous resistance that varies as the 3/2 power of the speed.

If the initial speed of the block is Vo at x=o, show that the block cannot travel further than 2m(Vo^(1/2))/c

c is the drag constant.

Homework Equations



The viscous resistance is defined as F(v)=-cv^(3/2)


The Attempt at a Solution



So I defined my axis so that F = ma = -F(v) = cv^(3/2)

It's obvious that I need to calculate the limit of t when t goes to infinity from the position equation. So I integrate my F=ma equation twice and I don't get the answer.

For my first integration, I have dv/(v^(3/2)) = (cm)dt which gets me 1/(V^(1/2)) - 1/(Vo^(1/2)) = cmt

Now I isolate V=dx/dt in order to integrate a second time. I find that V=1/((Vo^(1/2)) + (ct/2m))^2

Let u = the denominator, du = cdt/2m --> dt = 2mdu/c. The integral becomes dx=1/(u)^2du
and I get x = -1/u. After I replace u for it's value, my limit when t-->infinity isn't what the question demands.

Could someone tell me where I might have made a mistake?
 
Physics news on Phys.org
Jukai said:

Homework Equations



The viscous resistance is defined as F(v)=-cv^(3/2)


The Attempt at a Solution



So I defined my axis so that F = ma = -F(v) = cv^(3/2)

It's obvious that I need to calculate the limit of t when t goes to infinity from the position equation. So I integrate my F=ma equation twice and I don't get the answer.

For my first integration, I have dv/(v^(3/2)) = (cm)dt which gets me 1/(V^(1/2)) - 1/(Vo^(1/2)) = cmt

The viscous force acts opposite to the direction of motion. It was already defined with the correct sign, but you negated it. If you take your solution and replace c -> -c you might get the correct result.
 
fzero said:
The viscous force acts opposite to the direction of motion. It was already defined with the correct sign, but you negated it. If you take your solution and replace c -> -c you might get the correct result.

I just tried it, and my limit is still wrong. My second integral is now x = m/c((1/Vo^(1/2)) - (ct/m))
 
You're missing some minus signs and factors of 2. You're also missing the t=0 term in the integration of the velocity. For the first integration I find

-\frac{2}{\sqrt{v}} + \frac{2}{\sqrt{v_0}} = - \frac{ct}{m}

The 2nd integration gives

x = \frac{2m v_0 }{c\sqrt{v_0}} \left( - \frac{1}{1+\frac{c\sqrt{v_0}}{2m}t} + 1\right).

After simplifying, you get something that yields

x(t\rightarrow\infty) \rightarrow \frac{2m\sqrt{v_0}}{c}.
 
thank you very much, I understand now
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top