What is the limit of the given function as m approaches 0?

  • Thread starter Thread starter ramyfishler
  • Start date Start date
  • Tags Tags
    Limit
ramyfishler
Messages
3
Reaction score
0
1. calculate the limit of the following function as m\rightarrow0

\frac{\beta J}{sinh^{2}(\beta J m)}-\frac{\beta 2 J (s+1/2)^{2}}{sinh^{2}(\beta 2 J m (s+1/2))}


2. \frac{\beta J}{sinh^{2}(\beta J m)}-\frac{\beta 2 J (s+1/2)^{2}}{sinh^{2}(\beta 2 J m (s+1/2))}




3. I tried lupitals law after expressing the function in a 0/0 I also tried to expand sinhx to 1+x but I get infinity and the answer should be finit
 
Physics news on Phys.org
sinh(x)=x+x^3/3!+... You just need the first term. Each term in your difference goes to infinity like a different constant times 1/m^2. The limit isn't finite. Unless m is not just a multiplicative factor. What is it?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top