Limit for Solving Trigonometric Equation near pi/2

  • Thread starter Thread starter fermio
  • Start date Start date
  • Tags Tags
    Limit
fermio
Messages
38
Reaction score
0

Homework Statement


\lim_{x\to\frac{\pi}{2}}(x-\frac{\pi}{2})\tan x


Homework Equations



answer is (-1)

The Attempt at a Solution



\lim_{x\to\frac{\pi}{2}}(x-\frac{\pi}{2})\tan x= \lim_{x\to\frac{\pi}{2}}(x-\frac{\pi}{2})\cdot\frac{1-\cos(2x)}{\sin(2x)}
 
Physics news on Phys.org
Try rewriting it as (x - pi/2)/(cotx). Why is this helpful?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top