Limit Manipulation: Solving for Infinity in Tricky Limits | Homework Help

  • Thread starter Thread starter Quinzio
  • Start date Start date
  • Tags Tags
    Limit
Quinzio
Messages
557
Reaction score
1

Homework Statement

\lim_{n \to +\infty} \left (7(6^{\frac{1}{3}}n)^{3n}-7^{3n}+(n+1)!\right) \left(\frac{1}{n}-\sin \frac{1}{n} \right)^n

Homework Equations


Limits manipulation

The Attempt at a Solution



Ok, in the first parenthesis, I have clear (I hope so) that the biggest term is the one containing n^n, since n^n>n!>a^n>...
I should make passages, but this is quite clear to me.

The hard part is that
\lim_{n \to +\infty} \left(\frac{1}{n}-\sin \frac{1}{n} \right)^n

I am tempted to replace x = \frac{1}{n}
so that I obtain

\lim_{x \to 0} \left(x - \sin x \right)^{\frac{1}{x}}

Now, remembering that for x \to 0
\sin x = x - \frac{x^3}{6}+ o(x^3)
I'll write
\lim_{x \to 0} \left(x - \sin x \right)^{\frac{1}{x}} = \left(\frac{x^3}{6}+ o(x^3) \right)^{\frac{1}{x}}

Let me forget the rest o(x^3), and go back to n
and write that

\lim_{n \to +\infty} \left(\frac{1}{n}-\sin \frac{1}{n} \right)^n = \frac{1}{6n^{3n}}
This should hold true, as n \to +\infty

Now, I go back to the first part of the limit

\lim_{n \to +\infty} \left (7(6^{\frac{1}{3}}n)^{3n}-7^{3n}+(n+1)!\right)
neglecting the parts that are lower oder of infinity wrt to n^nI can write it as
\lim_{n \to +\infty} \left (7(6^{\frac{1}{3}}n)^{3n}\right)
\lim_{n \to +\infty} \left (7(6^{n})n^{3n}\right)

If I divide it by the term coming from the other expression I get

\lim_{n \to +\infty} \frac {\left (7(6^{n})(n^{3n})\right)}{6n^{3n}} = \lim_{n \to +\infty} \left (\frac{7}{6}(6^{n})\right) = +\infty

I should have finally found that all that stuff goes to infinity.

But I'm not really sure of the passages... anyone can kindly confirm ?
 
Last edited:
Physics news on Phys.org
Quinzio said:
I'll write
\lim_{x \to 0} \left(x - \sin x \right)^{\frac{1}{x}} = \left(\frac{x^3}{6}+ o(x^3) \right)^{\frac{1}{x}}

Let me forget the rest o(x^3), and go back to n
and write that

\lim_{n \to +\infty} \left(\frac{1}{n}-\sin \frac{1}{n} \right)^n = \frac{1}{6n^{3n}}
This should hold true, as n \to +\infty

I believe this is \lim_{n \to +\infty} \left(\frac{1}{n}-\sin \frac{1}{n} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{6n^{3}}\right)^n = \lim_{n \to +\infty} \left(\frac{1}{6^{n}n^{3n}}\right) ,

making the final result

\lim_{n \to +\infty} \frac {\left (7(6^{n})(n^{3n})\right)}{6^{n}n^{3n}} = 7 .

(It took a while to spot the omission. A graph of the function confirms this limit -- although the grapher's calculator gave out before x = 60...)
 
Ah sure... poor me !

Thanks so much.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top