username12345
- 47
- 0
Homework Statement
\mathop {\lim }\limits_{x \to 0 } \frac{1 - cosh(2x)}{{4x^3 + x^2}}
Homework Equations
Product, sum, quotient laws
The Attempt at a Solution
\mathop {\lim }\limits_{x \to 0 } \frac{1 - cosh(2x)}{{4x^3 + x^2}} = <br /> \mathop {\lim }\limits_{x \to 0 } \frac{\lim 1 - \lim cosh(2x)}{{\lim 4 + \lim x^3 + \lim x^2}}<br /> = <br /> \mathop {\lim }\limits_{x \to 0 } \frac{1 - \lim cosh(2x)}{{4 + 0 + 0}} <br /> = <br /> \mathop {\lim }\limits_{x \to 0 } \frac{1 - cosh(\lim 2x)}{{4}}<br /> = <br /> \frac{1 - cosh(0)}{{4}}<br /> = \frac{1 - 1}{{4}}<br /> = 0<br />
However the answer is supposed to be 2.
I was sure the denominator should be 4, but not sure how to get 8 in the numerator
