Limit of Finite Sum: Solving the Convergence for a Series with Zero Sum

  • Thread starter Thread starter dobry_den
  • Start date Start date
  • Tags Tags
    Finite Limit Sum
dobry_den
Messages
113
Reaction score
0

Homework Statement



Hey, I'm trying to determine the following limit:

\lim_{n \rightarrow \infty}\sum_{j=0}^k{a_j\sqrt{n+j}}

where

\sum_{j=0}^k{a_j}=0

The Attempt at a Solution



I tried to go this way:

\lim_{n \rightarrow \infty}\sqrt{n+k}\sum_{j=0}^k{a_j\frac{\sqrt{n+j}}{\sqrt{n+k}}}

but still I get 0*infinity, which is undefined.
 
Physics news on Phys.org
Let M be the sum of all of the positive a_j, so the sum of all the negative a_j is -M. Now split the sum into the sum of all the positive members, call it Sp and the sum of all the negative members, call it Sn. So the whole sum is Sp+Sn. Convince yourself that Sp<=M*sqrt(n+k) and Sn<=(-M)*sqrt(n). So an upper bound for the sum is M(sqrt(n+k)-sqrt(n)). Show that approaches zero. Now find a lower bound and repeat.
 
Oh yes, thanks a lot!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top