Дьявол
- 365
- 0
limit of function ("sandwich" method)
Using the "sandwich" method prove that \lim_{n\rightarrow \propto }(\frac{sin(n)}{n})=0
x_n \leq y_n \leq z_n
\lim_{n\rightarrow \propto }(x_n) \leq \lim_{n\rightarrow \propto }(y_n) \leq \lim_{n\rightarrow \propto }(z_n)
I am honestly little bit confused at this point.
If the answer is:
\frac{-1}{n} \leq \frac{sin(n)}{n} \leq \frac{1}{n}
then my question is if n=-\frac{\pi}{4} then \frac{-1}{-0.785} will be not less or equal to \frac{\sqrt{2}}{2*(-0.785)}, where -0.785=-\frac{\pi}{4}, where \pi \approx 3.14.
Thanks in advance.
Homework Statement
Using the "sandwich" method prove that \lim_{n\rightarrow \propto }(\frac{sin(n)}{n})=0
Homework Equations
x_n \leq y_n \leq z_n
\lim_{n\rightarrow \propto }(x_n) \leq \lim_{n\rightarrow \propto }(y_n) \leq \lim_{n\rightarrow \propto }(z_n)
The Attempt at a Solution
I am honestly little bit confused at this point.
If the answer is:
\frac{-1}{n} \leq \frac{sin(n)}{n} \leq \frac{1}{n}
then my question is if n=-\frac{\pi}{4} then \frac{-1}{-0.785} will be not less or equal to \frac{\sqrt{2}}{2*(-0.785)}, where -0.785=-\frac{\pi}{4}, where \pi \approx 3.14.
Thanks in advance.
Last edited: