Limit of Summation: Solving with Integration

  • Thread starter Thread starter azatkgz
  • Start date Start date
  • Tags Tags
    Limit Summation
azatkgz
Messages
182
Reaction score
0

Homework Statement


\frac{1}{n}\lim_{n\rightarrow\infty}\sum_{k=1}^{n}f(a+\frac{b-a}{n}k)





The Attempt at a Solution


I tried to solve it simply.
\frac{1}{n}\lim_{n\rightarrow\infty}\sum_{k=1}^{n}f(a+\frac{b-a}{n}k)=\int_{0}^{1}f(a+(b-a)x)dx

=f(b)-f(a)
 
Last edited:
Physics news on Phys.org
Sorry,
\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}f(a+\frac{b-a}{n}k)=\int_{0}^{1}f(a+(b-a)x)dx
 
Very good. Now integrate by letting u= a+ (b-a)x. What is du? Also, be careful about the limits of integration.
 
\int_{a}^{b}\frac{f(u)du}{(b-a)}=\frac{1}{b-a}(f(b)-f(a))
Yes?
 
Yes, to the left hand side. No, to the right. Unless the 'f' on the right stands for the antiderivative of the 'f' on the left. In which case you should say so and use a different symbol.
 
Than ,actually,answer remains just
\frac{1}{b-a}\int_{a}^{b}f(u)du
 
Sure the summation is just a definition of a riemann integral.
 

Similar threads

Replies
8
Views
1K
Replies
6
Views
1K
Replies
6
Views
2K
Replies
7
Views
1K
Replies
3
Views
2K
Replies
4
Views
1K
Replies
9
Views
2K
Back
Top