twoflower
- 363
- 0
Hi all,
suppose I want to get this:
<br /> \lim_{[x,y] \rightarrow [0,0]} (x^2+y^2)^{xy}<br />
Here's how I approached:
<br /> \lim_{[x,y] \rightarrow [0,0]} (x^2+y^2)^{xy} = \lim_{[x,y] \rightarrow [0,0]} \exp^{xy \log (x^2+y^2)}<br /> <br /> \lim_{[x,y] \rightarrow [0,0]} xy \log (x^2 + y^2) = (x^2 + y^2) \log (x^2 + y^2) \frac{xy}{x^2 + y^2} \rightarrow 0<br />
Because the last fraction is bounded and the part before it goes to 0 (I hope).
But that's the problem, I don't know how to prove
<br /> \lim_{t \rightarrow 0+} t\ \log t = 0<br />
Thank you for help.
suppose I want to get this:
<br /> \lim_{[x,y] \rightarrow [0,0]} (x^2+y^2)^{xy}<br />
Here's how I approached:
<br /> \lim_{[x,y] \rightarrow [0,0]} (x^2+y^2)^{xy} = \lim_{[x,y] \rightarrow [0,0]} \exp^{xy \log (x^2+y^2)}<br /> <br /> \lim_{[x,y] \rightarrow [0,0]} xy \log (x^2 + y^2) = (x^2 + y^2) \log (x^2 + y^2) \frac{xy}{x^2 + y^2} \rightarrow 0<br />
Because the last fraction is bounded and the part before it goes to 0 (I hope).
But that's the problem, I don't know how to prove
<br /> \lim_{t \rightarrow 0+} t\ \log t = 0<br />
Thank you for help.