Limits Question: Proving Sn <= b for Finite n

  • Thread starter Thread starter phygiks
  • Start date Start date
  • Tags Tags
    Limits
phygiks
Messages
16
Reaction score
0
Hello,
I'm having trouble with this question.
Let Sn be a sequence that converges. Show that if Sn <= b for all but finitely many n, then lim sn <= b.
This is what I'm trying to do, assume s = lim Sn and s > b. (Proof by contradiction) abs(Sn-s) < E, E > 0. Don't know what to do from there, but maybe set E = s -b. E is epsilon by the way. Probably to start using latex...

If anyone could help, that would be awesome.
 
Physics news on Phys.org
Your idea is fine so far. Now what does |s_n - s| &lt; \epsilon = s-b for all n > N imply?
 
s is a upper bound, so the Sn-s is negative. So abs(Sn-s) < s -b doesn't hold true all n. I'm not sure though
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top