Line Integral: Computing for $\int _1 ^2 V(x)dx$

mathsciguy
Messages
134
Reaction score
1
Suppose I have a vector V and I want to compute for the line integral from point (1,1,0) to point (2,2,0) and I take the path of the least distance (one that traces the identity function).

The line integral is of the form:
\int _a ^b \vec{V} \cdot d\vec{l}

Where:

x=y, \ d\vec{l} =dx \hat{x} + dx \hat{y}

Thus the integral can be computed purely in terms of x (can also be y), which looks something like this:
\int _a ^b V(x)dx

What I don't exactly understand is why is it okay to use the limits like this:
\int _1 ^2 V(x)dx

Why can we use the limits from 1 to 2 if we express the line integral in terms purely of x. I have a very vague idea of why it is, but I'd rather take it from people who actually know this to explain this to me. Thanks.
 
Mathematics news on Phys.org
If I understand you correctly, the function you end up integrating is only in terms of ##x##, and therefore you don't need to parametrize it (or you can look at it by saying you are using ##x## as your parameter). Either way, because your function is dependent only on ##x##, all you have to do is integrate along the x-axis, which is from 1 to 2.
 
Actually, I've found out that to 'parametrize' the variables into x=t, y=t is a more comforting method to do it. At least intuitively, I see it as tracing the path of integration when we set the x and y variables into that parametric equation.

Edit: Yes, I didn't see it, but I was using x as the parameter. Thanks.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top