player1_1_1
- 112
- 0
Hello, sorry for my English;D
Can a vector field exist in polar/spherical system? is it possible to define line integral in these systems? does it make any sense a vector field defined in polar system, ex. \vec A\left(r,\varphi\right)=r^3? and a line integral from r_1,\varphi_1 to r_2,\varphi_2 like this \int\limits_L\vec A\left(r,\varphi\right)\mbox{d}r+r\vec A\left(r,\varphi\right)\mbox{d}\varphi, where L is a line defined by r\left(\phi\right) equation or r=r(t),\quad\phi=\phi(t)
and for spherical system \int\limits_L\vec A\left(r,\varphi,\phi\right)\mbox{d}r+r\vec A\left(r,\varphi,\phi\right)\mbox{d}\varphi+r\vec A\left(r,\varphi,\phi\right)\mbox{d}\phi?
thanks!
Homework Statement
Can a vector field exist in polar/spherical system? is it possible to define line integral in these systems? does it make any sense a vector field defined in polar system, ex. \vec A\left(r,\varphi\right)=r^3? and a line integral from r_1,\varphi_1 to r_2,\varphi_2 like this \int\limits_L\vec A\left(r,\varphi\right)\mbox{d}r+r\vec A\left(r,\varphi\right)\mbox{d}\varphi, where L is a line defined by r\left(\phi\right) equation or r=r(t),\quad\phi=\phi(t)
and for spherical system \int\limits_L\vec A\left(r,\varphi,\phi\right)\mbox{d}r+r\vec A\left(r,\varphi,\phi\right)\mbox{d}\varphi+r\vec A\left(r,\varphi,\phi\right)\mbox{d}\phi?
thanks!