Linear algebra: orthonormal basis

Felafel
Messages
170
Reaction score
0

Homework Statement


##\phi## is an endomorphism in ##\mathbb{E}^3## associated to the matrix
(1 0 0)
(0 2 0) =##M_{\phi}^{B,B}##=
(0 0 3)

where B is the basis: B=((1,1,0),(1,-1,0),(0,0,-1))

Find an orthonormal basis "C" in ##\mathbb{E}^3## formed by eigenvectors of ##\phi##

The Attempt at a Solution



Being the eigenvalues the elements of the diagonal 1, 2, 3
Aren't (1, 0, 0), (0,2,0), (0,0,3) three orthonormal vectors already?

Or should I write the endomorphism according to the canonical basis first and find new values?
 
Physics news on Phys.org
Felafel said:

Homework Statement


##\phi## is an endomorphism in ##\mathbb{E}^3## associated to the matrix
(1 0 0)
(0 2 0) =##M_{\phi}^{B,B}##=
(0 0 3)

where B is the basis: B=((1,1,0),(1,-1,0),(0,0,-1))

Find an orthonormal basis "C" in ##\mathbb{E}^3## formed by eigenvectors of ##\phi##

The Attempt at a Solution



Being the eigenvalues the elements of the diagonal 1, 2, 3
Aren't (1, 0, 0), (0,2,0), (0,0,3) three orthonormal vectors already?
Yes, they are, but these aren't the vectors they're asking for.
Felafel said:
Or should I write the endomorphism according to the canonical basis first and find new values?

Use the eigenvalues to find a basis of eigenvectors, and then make an orthonormal basis out of that set of vectors.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top