Linear Algebra: Projection onto a subspace

Kisa30
Messages
4
Reaction score
0

Homework Statement



mat.png


That is the question. The answer on the bottom is incorrect

Homework Equations



20276.nce108.gif

I believe that is the formula that is supposed to be used.

The Attempt at a Solution



All I really did was plug in the equation into the formula but there is something I am missing because the answer is incorrect

Projection = (41/65)v1 + (26/5)v2
This is what I got after inserting the projection formula.
And in the first image, on the bottom it shows the final solutions I got.


Please help me figure out how to do this question and where I went wrong.

Thanks in advanced!
 
Physics news on Phys.org
Just a thought, but do you have to provide the solutions in a specific number format (i.e. rounded to a certain number of figures) or maybe as exact fractions?
 
I don't think it's important, no. =)
 
What conditions must v1 and v2 meet so that the formula can be used?

An alternative approach would be to find a vector x that's perpendicular to V, and find the projection of v onto x, and subtract that from v. What's left over will lie in the subspace V.
 
Apparently the problem is that it's not orthogonal.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top