Linear Combinations of Dependent Vectors

Random Variable
Messages
114
Reaction score
0

Homework Statement



If (u,v,w) is a family of linearly dependent vectors in vector space V and vector x is in the span of (u,v,w), then x=αu+βv+γw has infinitely-many choices for α,β, and γ.

Homework Equations



If (u,v,w) is linearly dependent, then there exists an α, β, and γ, not all equal to zero, such that αu+βv+γw=0.

The Attempt at a Solution



My first attempt, which didn't go anywhere, was to assume that there were only a finite number of choices and see if that led to a contradiction.

For my second attempt, I started with the fact that (u,v,w) is linearly dependent. Then I multiplied both sides by an arbitrary scalar n. Then I thought I could add x to both sides and manipulate the equation somehow, but that didn't lead anywhere either.

If I was dealing with the vector space R^n, then x=αu+βv+γw would have infinitely-many solutions because you would end up with at least one free variable since at least one of the vectors is just a linear combination of the others. Can you apply that reasoning to all vector spaces?
 
Last edited:
Physics news on Phys.org
As you say, since (u,v,w) is linearly independent so there exist \alpha, \beta, \gamma, not all 0, such that \alpha u+ \beta v+ \gamma w= 0.

Further, since (u,v,w) spans V there exist, for any x in V, scalars a, b, c such that au+ bv+ cw= x.

Now, what can you say about au+ bv+ cw+ R(\alpha u+ \beta v+ \gamma w) for any real number R?
 
It equals x?

(Rα+a)u +(Rβ+b)v +(Rγ+c)w = x

And since Rα or Rβ or Rγ is not zero, the equation has infinitely-many solutions?
 
Yes, every different choice for R gives a different linear combination but they are all equal to x!

And it is doing exactly what YOU suggested:
For my second attempt, I started with the fact that (u,v,w) is linearly dependent. Then I multiplied both sides by an arbitrary scalar n. Then I thought I could add x to both sides and manipulate the equation
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top