Linear first-order differential equation with an initial condition

Click For Summary

Homework Help Overview

The discussion revolves around a linear first-order differential equation with an initial condition. Participants are exploring various approaches to differentiate expressions involving integrals and exponential functions related to the equation.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss attempts to differentiate expressions involving integrals and exponential terms. There is exploration of the implications of specific terms like ##f(x,x)## and the evaluation of integrals at particular limits.

Discussion Status

Some participants have provided guidance on differentiation techniques and the application of the product rule. There is ongoing exploration of different interpretations of the terms involved, particularly regarding the behavior of the exponential terms in relation to the integrals.

Contextual Notes

Participants are navigating through the complexities of the problem, including the challenge of differentiating expressions that involve limits and the behavior of functions at specific points. There is mention of constraints related to the form of the integrals and the initial conditions of the problem.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Show that the solution of a linear differential equation with boundary condition ##f(0)=f_0## has the following form ##f(x)=f_0 exp\biggl( \int_{0}^{x}ds ~g(s) \biggr)+\int_{0}^{x}ds ~h(s)exp\biggl( \int_{s}^{x}dr ~g(r)\biggr)##
Relevant Equations
none
Hi,

unfortunately I have problems with the task d and e, the complete task is as follows:

Bildschirmfoto 2023-06-28 um 14.05.38.png

Bildschirmfoto 2023-06-28 um 14.06.04.png

I tried to form the derivative of the equation ##f(x)##, but unfortunately I have problems with the second part, which is why I only got the following.

$$\frac{d f(x)}{dx}=f_0 g(x) \ exp\biggl( \int_{0}^{x}ds \ g(s) \biggr)+?$$

I then tried another approach and first wanted to get rid of the integrals in the exp terms

$$f_0 exp\biggl( G(x)-G(0) \biggr)+\int_{0}^{x}ds \ h(s) exp \biggl( G(x)-G(s) \biggr) f(x)dx$$
$$f_0 e^{G(x)-G(0)}+e^{G(x)}\int_{0}^{x}ds \ h(s) e^{-G(s)}$$

Unfortunately, I now have problems again with the derivative for the second term using this method.
 
Physics news on Phys.org
You have an expression of the form <br /> \int_a^x f(x,t)\,dt for which you can show from the limit definition that, for sufficiently smooth f, <br /> \frac{d}{dx} \int_a^x f(x,t)\,dt = \lim_{h \to 0} \frac 1h \left( \int_a^{x+h} f(x+h, t)\,dt - \int_a^x f(x,t)\,dt\right) =<br /> f(x,x) + \int_a^x \left.\frac{\partial f}{\partial x}\right|_{(x,t)}\,dt.
 
  • Like
Likes   Reactions: DeBangis21 and Lambda96
Thanks pasmith for your help 👍 , I tried to implement your tip but am not sure about the ##f(x,x)## term:

I have now calculated the following

$$\frac{d f(x)}{dx}=\frac{d}{dx}\biggl( f_0 \ exp\Bigl( \int_{0}^{x}ds \ g(s) \Bigr) +\int_{0}^{x}ds \ h(s) \ exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr) \biggr)$$

$$\frac{d f(x)}{dx}= f_0 \ exp\Bigl( \int_{0}^{x}ds \ g(s) \Bigr) g(x) + h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)+\int_{0}^{x}ds \ h(s) \frac{d}{dx} \ exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)$$

$$\frac{d f(x)}{dx}= f_0 \ exp\Bigl( \int_{0}^{x}ds \ g(s) \Bigr) g(x) + h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)+\int_{0}^{x}ds \ h(s) exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)g(x)$$

$$\frac{d f(x)}{dx}= f_0 \ exp\Bigl( \int_{0}^{x}ds \ g(s) \Bigr) g(x) + h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)+\int_{0}^{x}ds \ h(s) exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)g(x)$$

$$\frac{d f(x)}{dx}= f_0 \ exp\Bigl( \int_{0}^{x}ds \ g(s) \Bigr) g(x) +\int_{0}^{x}ds \ h(s) exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)g(x)+ h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)$$

$$\frac{d f(x)}{dx}=f(x)g(x)+ h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)$$

Now I'm just having trouble with the term ##h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)##, which is equivalent to ##f(x,x)##. I was just having trouble figuring out what the exp term should be. After all, the easiest way would be for the integral to go from x to x, which would make the exponent zero and thus ##e^{0}=1## and I would get ##f(x)g(x)+h(x)##
 
Lambda96 said:
Now I'm just having trouble with the term ##h(x)exp\Bigl( \int_{s}^{x}dr \ g(r) \Bigr)##, which is equivalent to ##f(x,x)##. I was just having trouble figuring out what the exp term should be. After all, the easiest way would be for the integral to go from x to x, which would make the exponent zero and thus ##e^{0}=1## and I would get ##f(x)g(x)+h(x)##

Yes. The integrand is a function of x and s, so it is evaluated at (x,s) = (x,x).
 
  • Like
Likes   Reactions: Lambda96
Lambda96 said:
I then tried another approach and first wanted to get rid of the integrals in the exp terms

$$f_0 \exp\biggl( G(x)-G(0) \biggr)+\int_{0}^{x}ds \ h(s) \exp \biggl( G(x)-G(s) \biggr) \,dx$$
$$f_0 e^{G(x)-G(0)} + e^{G(x)} \int_{0}^{x}ds \ h(s) e^{-G(s)}$$

Unfortunately, I now have problems again with the derivative for the second term using this method.
The second term is of the form ##e^{G(x)} [J(x)-J(0)]## where ##J'(x) = h(x) \exp[-G(x)]##. Just apply the product rule.
 
  • Like
Likes   Reactions: Lambda96
Thanks pasmith and vela for your help 👍👍
 

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K