Linear Independence: Answer to Homework

AI Thread Summary
Vectors a, b, and c are linearly independent, leading to the conclusion that the vectors a+b, b+c, and a+c are also linearly independent. The proof involves expressing the combination k_1(a+b) + k_2(b+c) + k_3(a+c) = 0 and distributing it to form a system of equations. By solving these equations, it is shown that the only solution is the trivial one, where k_1, k_2, and k_3 are all zero. An alternative method using matrix row reduction confirms this result by yielding an identity matrix. Therefore, the vectors a+b, b+c, and a+c maintain linear independence.
nuuskur
Science Advisor
Messages
920
Reaction score
1,221

Homework Statement


Assume vectors ##a,b,c\in V_{\mathbb{R}}## to be linearly independent. Determine whether vectors ##a+b , b+c , a+c## are linearly independent.

Homework Equations

The Attempt at a Solution


We say the vectors are linearly independent when ##k_1a + k_2b +k_3c = 0## only when every ##k_n = 0## - the only solution is a trivial combination.
Does there exist a non-trivial combination such that
##k_1(a+b) + k_2(b+c) + k_3(a+c) = 0##?. Distributing:
##k_1a + k_1b + k_2b + k_2c + k_3a + k_3c = (k_1 + k_3)a + (k_1+k_2)b + (k_2+k_3)c = 0## Since ##a,b,c## are linearly independent, the only way this result can occur is when:
##k_1+k_3 =0\Rightarrow k_1 = -k_3##
##k_1+k_2 =0##
##k_2+k_3 =0##

Substituting eq 1 into eq 2 we arrive at ##k_2 - k_3 = 0## and according to eq 3 ##k_2 + k_3=0##, which means ##k_2 - k_3 = k_2 + k_3##, therefore ##k_3 = 0##, because ##k=-k## only if ##k=0##. The only solution is a trivial combination, therefore the vectors ##a+b, b+c, a+c## are linearly independent.
 
Last edited:
Physics news on Phys.org
nuuskur said:

Homework Statement


Assume vectors ##a,b,c\in V_{\mathbb{R}}## to be linearly independent. Determine whether vectors ##a+b , b+c , a+c## are linearly independent.

Homework Equations

The Attempt at a Solution


We say the vectors are linearly independent when ##k_1a + k_2b +k_3c = 0## only when every ##k_n = 0## - the only solution is a trivial combination.
Does there exist a non-trivial combination such that
##k_1(a+b) + k_2(b+c) + k_3(a+c) = 0##?. Distributing:
##k_1a + k_1b + k_2b + k_2c + k_3a + k_3c = (k_1 + k_3)a + (k_1+k_2)b + (k_2+k_3)c = 0## Since ##a,b,c## are linearly independent, the only way this result can occur is when:
##k_1+k_3 =0\Rightarrow k_1 = -k_3##
##k_1+k_2 =0##
##k_2+k_3 =0##

Substituting eq 1 into eq 2 we arrive at ##k_2 - k_3 = 0## and according to eq 3 ##k_2 + k_3=0##, which means ##k_2 - k_3 = k_2 + k_3##, therefore ##k_3 = 0##, because ##k=-k## only if ##k=0##. The only solution is a trivial combination, therefore the vectors ##a+b, b+c, a+c## are linearly independent.
That works for me. (IOW, I agree that the three new vectors are linearly independent.)

Instead of working with the system of equations, you can set up a matrix and row reduce it. If you end up with the identity matrix, what that says is that ##k_1 = k_2 = k_3 = 0##, and that there are no other solutions.

The matrix looks like this, from your system:
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{bmatrix}$$
After a few row operations, the final matrix is I3.
 
Mark44 said:
That works for me. (IOW, I agree that the three new vectors are linearly independent.)

Instead of working with the system of equations, you can set up a matrix and row reduce it. If you end up with the identity matrix, what that says is that ##k_1 = k_2 = k_3 = 0##, and that there are no other solutions.

The matrix looks like this, from your system:
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{bmatrix}$$
After a few row operations, the final matrix is I3.

Alternatively, you can compute the determinant of the matrix to find that it is nonzero. What would that tell you?
 
Ray Vickson said:
Alternatively, you can compute the determinant of the matrix to find that it is nonzero. What would that tell you?
Oh. Cramer's rule.
##k_n = \frac{D_{k_n}}{D}## and since the determinant of the system is non zero, the corresponding determinants for every ##k_n## would be 0 (a full column of 0-s means det = 0) and therefore ##k_1 = k_2 = k_3 = 0##
 
nuuskur said:
Oh. Cramer's rule.
##k_n = \frac{D_{k_n}}{D}## and since the determinant of the system is non zero, the corresponding determinants for every ##k_n## would be 0 (a full column of 0-s means det = 0) and therefore ##k_1 = k_2 = k_3 = 0##

No, I was not referring to Cramer's rule (which is rarely actually used when solving equations). I was referring to the theorem that if det(A) ≠ 0 then the n ×n system Ak = 0 has k = 0 as its only solution.
 

Similar threads

Back
Top