Linear Operator L with Zero Matrix Elements

sayebms
Messages
31
Reaction score
0

Homework Statement


Suppose a linear operator L satisfies <A|L|A> = 0 for every state A. Show that then all matrix elements <B|L|A> = 0, and hence L = 0.

Homework Equations


##<A|L|A>=L_{AA} and <B|L|A>=L_{BA}##

The Attempt at a Solution


It seems very straight forward and I don't know how to prove it but here is what I have tried:
##<B|L|A> \to##Using resolution of Identity ##\to \sum_{A} <B|A><A|L|A> \to <B|L|A>=0##
Is it right or do I need to write more.
 
Last edited:
Physics news on Phys.org
It is not correct, you are summing over A and at the same time assuming that ##|A\rangle## is a fixed state (i.e., the one you started with in ##\langle B|L|A\rangle##).
 
since the problems says for every state A so should I write as following ##<A_i|L|A_i>=0 \to ## then as before
## <B_j|L|A_i>=\sum_{i}<B_j|A_i><A_i|L|A_i>=0##
is it right now?
 
No, it is still wrong. You cannot let the state you are summing over in the completeness relation be denoted by the same as the state you have on the left-hand side. It is simply not correct.
 
should I solve it without the resolution of Identity?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top