"Don't panic!"
- 600
- 8
Hi all,
I've been doing some independent study on vector spaces and have moved on to looking at linear operators, in particular those of the form T:V \rightarrow V. I know that the set of linear transformations \mathcal{L}\left( V,V\right) =\lbrace T:V \rightarrow V \vert \text{T is linear} \rbrace form a vector space over \mathbb{F}, under the operations of point-wise addition and scalar multiplication, but I've been trying to show this explicitly by showing that these operations satisfy the vector space axioms. Here's my attempt so far:
Let V be a vector space over \mathbb{F} and let \mathcal{L}\left( V,V\right) =\lbrace T:V \rightarrow V \vert \text{T is linear} \rbrace be the set of all linear transformations from V into itself. As the operators T \in \mathcal{L}\left(V,V\right) are linear, they satisfy the following conditions T\left(\mathbf{v} + \mathbf{w}\right)= T\left(\mathbf{v}\right) + T\left(\mathbf{w}\right) \quad\forall \mathbf{v},\mathbf{w} \in V,\; T\in \mathcal{L}\left(V,V\right) and T\left(c\mathbf{v}\right) = cT\left(\mathbf{v}\right)
And as such, we define point-wise addition of two operators S, T\in \mathcal{L}\left(V,V\right) as \left(T+S\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right) and scalar multiplication of and operator T\in \mathcal{L}\left(V,V\right) by some scalar from the underlying field \mathbb{F} as T\left(c\mathbf{v}\right) = \left(cT\right) \left(\mathbf{v}\right) = cT\left( \mathbf{v}\right)
Given this, we can now show that \mathcal{L}\left(V,V\right) forms a vector space. First, we note that as both S, T\in \mathcal{L}\left(V,V\right) clearly their "operator sum" T+S \in\mathcal{L}\left(V,V\right) and similarly cT \in\mathcal{L}\left(V,V\right) and hence the set \mathcal{L}\left(V,V\right) is closed under these binary operations. Now, we shall check that \mathcal{L}\left(V,V\right) satisfies the vector space axioms.
1. (Commutativity of vector addition). Given S, T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, and noting that as both S and T maps V into itself, such that S\left(\mathbf{v}\right), T\left(\mathbf{v}\right) \in V and therefore satisfy the vector space axioms, we have that \left(T+S\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right)= S\left(\mathbf{v}\right) +T\left(\mathbf{v}\right)= \left(S+T\right) \left(\mathbf{v}\right).
2. (Associativity of vector addition). Given S, T, U\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, we have that \left(T +\left(S+U\right)\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(S+U\right)\left( \mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(S\left(\mathbf{v}\right) + U\left(\mathbf{v}\right) \right) \qquad\qquad\qquad\quad\quad = \left(T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right) \right) + U\left(\mathbf{v}\right) = \left(T+S\right) \left(\mathbf{v}\right) + U\left(\mathbf{v}\right) \qquad\qquad\qquad\quad\quad =\left(\left(T +S \right) +U\right) \left(\mathbf{v}\right).
3. (Identity element of vector addition). Let us define an operator \tilde{T} such that \tilde{T}\left( \mathbf{v}\right) = \mathbf{0}. Hence, given T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, we have that \left( T+ \tilde{T} \right)\left(\mathbf{v} \right) = T\left(\mathbf{v}\right) + \tilde{T}\left( \mathbf{v}\right) = T\left(\mathbf{v} \right) + \mathbf{0} = T\left(\mathbf{v} \right)
where we have noted that T\left( \mathbf{v}\right) \in V
hence an identity exists for \mathcal{L}\left(V,V\right). (*I'm really not sure I've done this part correctly, it doesn't seem right?!*).
4. (Inverse elements of addition) Noting that each \mathbf{v} \in V has a unique inverse, -\mathbf{v} \in V, such that \mathbf{v} + \left(-\mathbf{v}\right) = \mathbf{0}, and that \left(-1\right)\mathbf{v}= - \mathbf{v} \;\;\forall\;\mathbf{v} \in V, we have T\left(\mathbf{0}\right) = T\left( \mathbf{v} + \left(-\mathbf{v}\right) \right) = T\left(\mathbf{v}\right) + T\left(-\mathbf{v}\right)= T\left(\mathbf{v}\right) + T\left(\left(-1\right)\mathbf{v}\right) = T\left(\mathbf{v}\right)+ \left(-1\right)T\left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(-T\left(\mathbf{v}\right)\right)= \left(T + \left(-T\right)\right)\left(\mathbf {v}\right) = \mathbf{0} where we have noted that T\left(\mathbf{0}\right) = T\left(0\mathbf{v}\right) = 0T\left(\mathbf{v}\right) = \mathbf{0} (as 0\mathbf{v}=\mathbf{0} \;\; \forall \mathbf{v} \in V and T\left(\mathbf{v}\right) \in \mathcal{L}\left(V,V\right).
Hence, each element T\in \mathcal{L}\left(V,V\right) has an inverse -T\in \mathcal{L}\left(V,V\right). (*Again, I'm not fully sure I'm correct on this one?!*).
5. (Compatibility of scalar multiplication with field multiplication). Let T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c_{1},c_{2} \in \mathbb{F}, noting that \left(c_{1}c_{2}\right) \mathbf{v} = c_{1}\left( c_{2}\mathbf{v}\right) \;\;\forall\, \mathbf{v} \in V, \; c_{1},c_{2} \in \mathbb{F}, we have that T\left(\left( c_{1}c_{2}\right) \mathbf{v}\right) = \left( c_{1}c_{2}\right)T\left( \mathbf{v}\right) and also T\left(\left( c_{1}c_{2}\right) \mathbf{v}\right)= T\left(c_{1}\left( c_{2}\mathbf{v}\right)\right)= c_{1}T\left(c_{2}\mathbf{v}\right) = c_{1}\left( c_{2} T\left(\mathbf{v}\right) \right) Hence, we have that, \left( c_{1}c_{2}\right) T\left( \mathbf{v}\right) = c_{1}\left( c_{2} T \right) \left(\mathbf{v}\right)
6. (Identity element of scalar multiplication). Noting that 1\mathbf{v} = \mathbf{v} \;\; \forall \mathbf{v} \in V, then given T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V we have T\left(\mathbf{v} \right)= T\left(1\mathbf{v} \right) = 1T\left(\mathbf{v} \right) = \left(1 T\right)\left(\mathbf{v} \right) as required.
7. (Distributivity of scalar multiplication with respect to vector addition). Let S,T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c \in \mathbb{F}. Then, \left(S+T\right)\left(c\mathbf{v}\right)= c\left(S+T\right)\left(\mathbf{v}\right) and also \left(S+T\right)\left(c\mathbf{v}\right) = S\left(c\mathbf{v}\right) + T\left(c\mathbf{v}\right) = cS\left(\mathbf{v}\right) + cT\left(\mathbf{v}\right) = \left( cS+ cT\right)\left(\mathbf{v}\right) and hence, c\left(S+T\right)\left(\mathbf{v}\right) =\left( cS+ cT\right)\left(\mathbf{v}\right)
8. (Distributivity of scalar multiplication with respect to field addition). Let T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c_{1},c_{2} \in \mathbb{F}. Then, noting that \left(c_{1} +c_{2}\right)\mathbf{v} = c_{1}\mathbf{v} + c_{2}\mathbf{v} \;\;\forall\; \mathbf{v} \in V, c_{1},c_{2} \in \mathbb{F}, we have that T\left(\left(c_{1} +c_{2}\right)\mathbf{v}\right) = \left(c_{1} +c_{2}\right) T\left(\mathbf{v}\right) and also T\left(\left(c_{1} +c_{2}\right)\mathbf{v}\right)= T\left(c_{1} \mathbf{v}\right) + T\left(c_{2}\mathbf{v}\right) = c_{1}T\left( \mathbf{v}\right)+ c_{2}T\left( \mathbf{v}\right) = \left(c_{1}T + c_{2}T\right)\left( \mathbf{v}\right) and hence, \left(c_{1} +c_{2}\right) T\left(\mathbf{v}\right)= \left(c_{1}T + c_{2}T\right)\left( \mathbf{v}\right) Therefore, the set \mathcal{L}\left( V,V\right) forms a vector space over \mathbb{F} under point-wise addition and scalar multiplication.
Is this a correct analysis?
I've been doing some independent study on vector spaces and have moved on to looking at linear operators, in particular those of the form T:V \rightarrow V. I know that the set of linear transformations \mathcal{L}\left( V,V\right) =\lbrace T:V \rightarrow V \vert \text{T is linear} \rbrace form a vector space over \mathbb{F}, under the operations of point-wise addition and scalar multiplication, but I've been trying to show this explicitly by showing that these operations satisfy the vector space axioms. Here's my attempt so far:
Let V be a vector space over \mathbb{F} and let \mathcal{L}\left( V,V\right) =\lbrace T:V \rightarrow V \vert \text{T is linear} \rbrace be the set of all linear transformations from V into itself. As the operators T \in \mathcal{L}\left(V,V\right) are linear, they satisfy the following conditions T\left(\mathbf{v} + \mathbf{w}\right)= T\left(\mathbf{v}\right) + T\left(\mathbf{w}\right) \quad\forall \mathbf{v},\mathbf{w} \in V,\; T\in \mathcal{L}\left(V,V\right) and T\left(c\mathbf{v}\right) = cT\left(\mathbf{v}\right)
And as such, we define point-wise addition of two operators S, T\in \mathcal{L}\left(V,V\right) as \left(T+S\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right) and scalar multiplication of and operator T\in \mathcal{L}\left(V,V\right) by some scalar from the underlying field \mathbb{F} as T\left(c\mathbf{v}\right) = \left(cT\right) \left(\mathbf{v}\right) = cT\left( \mathbf{v}\right)
Given this, we can now show that \mathcal{L}\left(V,V\right) forms a vector space. First, we note that as both S, T\in \mathcal{L}\left(V,V\right) clearly their "operator sum" T+S \in\mathcal{L}\left(V,V\right) and similarly cT \in\mathcal{L}\left(V,V\right) and hence the set \mathcal{L}\left(V,V\right) is closed under these binary operations. Now, we shall check that \mathcal{L}\left(V,V\right) satisfies the vector space axioms.
1. (Commutativity of vector addition). Given S, T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, and noting that as both S and T maps V into itself, such that S\left(\mathbf{v}\right), T\left(\mathbf{v}\right) \in V and therefore satisfy the vector space axioms, we have that \left(T+S\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right)= S\left(\mathbf{v}\right) +T\left(\mathbf{v}\right)= \left(S+T\right) \left(\mathbf{v}\right).
2. (Associativity of vector addition). Given S, T, U\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, we have that \left(T +\left(S+U\right)\right) \left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(S+U\right)\left( \mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(S\left(\mathbf{v}\right) + U\left(\mathbf{v}\right) \right) \qquad\qquad\qquad\quad\quad = \left(T\left(\mathbf{v}\right) + S\left(\mathbf{v}\right) \right) + U\left(\mathbf{v}\right) = \left(T+S\right) \left(\mathbf{v}\right) + U\left(\mathbf{v}\right) \qquad\qquad\qquad\quad\quad =\left(\left(T +S \right) +U\right) \left(\mathbf{v}\right).
3. (Identity element of vector addition). Let us define an operator \tilde{T} such that \tilde{T}\left( \mathbf{v}\right) = \mathbf{0}. Hence, given T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V, we have that \left( T+ \tilde{T} \right)\left(\mathbf{v} \right) = T\left(\mathbf{v}\right) + \tilde{T}\left( \mathbf{v}\right) = T\left(\mathbf{v} \right) + \mathbf{0} = T\left(\mathbf{v} \right)
where we have noted that T\left( \mathbf{v}\right) \in V
hence an identity exists for \mathcal{L}\left(V,V\right). (*I'm really not sure I've done this part correctly, it doesn't seem right?!*).
4. (Inverse elements of addition) Noting that each \mathbf{v} \in V has a unique inverse, -\mathbf{v} \in V, such that \mathbf{v} + \left(-\mathbf{v}\right) = \mathbf{0}, and that \left(-1\right)\mathbf{v}= - \mathbf{v} \;\;\forall\;\mathbf{v} \in V, we have T\left(\mathbf{0}\right) = T\left( \mathbf{v} + \left(-\mathbf{v}\right) \right) = T\left(\mathbf{v}\right) + T\left(-\mathbf{v}\right)= T\left(\mathbf{v}\right) + T\left(\left(-1\right)\mathbf{v}\right) = T\left(\mathbf{v}\right)+ \left(-1\right)T\left(\mathbf{v}\right) = T\left(\mathbf{v}\right) + \left(-T\left(\mathbf{v}\right)\right)= \left(T + \left(-T\right)\right)\left(\mathbf {v}\right) = \mathbf{0} where we have noted that T\left(\mathbf{0}\right) = T\left(0\mathbf{v}\right) = 0T\left(\mathbf{v}\right) = \mathbf{0} (as 0\mathbf{v}=\mathbf{0} \;\; \forall \mathbf{v} \in V and T\left(\mathbf{v}\right) \in \mathcal{L}\left(V,V\right).
Hence, each element T\in \mathcal{L}\left(V,V\right) has an inverse -T\in \mathcal{L}\left(V,V\right). (*Again, I'm not fully sure I'm correct on this one?!*).
5. (Compatibility of scalar multiplication with field multiplication). Let T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c_{1},c_{2} \in \mathbb{F}, noting that \left(c_{1}c_{2}\right) \mathbf{v} = c_{1}\left( c_{2}\mathbf{v}\right) \;\;\forall\, \mathbf{v} \in V, \; c_{1},c_{2} \in \mathbb{F}, we have that T\left(\left( c_{1}c_{2}\right) \mathbf{v}\right) = \left( c_{1}c_{2}\right)T\left( \mathbf{v}\right) and also T\left(\left( c_{1}c_{2}\right) \mathbf{v}\right)= T\left(c_{1}\left( c_{2}\mathbf{v}\right)\right)= c_{1}T\left(c_{2}\mathbf{v}\right) = c_{1}\left( c_{2} T\left(\mathbf{v}\right) \right) Hence, we have that, \left( c_{1}c_{2}\right) T\left( \mathbf{v}\right) = c_{1}\left( c_{2} T \right) \left(\mathbf{v}\right)
6. (Identity element of scalar multiplication). Noting that 1\mathbf{v} = \mathbf{v} \;\; \forall \mathbf{v} \in V, then given T\in \mathcal{L}\left(V,V\right) and \mathbf{v} \in V we have T\left(\mathbf{v} \right)= T\left(1\mathbf{v} \right) = 1T\left(\mathbf{v} \right) = \left(1 T\right)\left(\mathbf{v} \right) as required.
7. (Distributivity of scalar multiplication with respect to vector addition). Let S,T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c \in \mathbb{F}. Then, \left(S+T\right)\left(c\mathbf{v}\right)= c\left(S+T\right)\left(\mathbf{v}\right) and also \left(S+T\right)\left(c\mathbf{v}\right) = S\left(c\mathbf{v}\right) + T\left(c\mathbf{v}\right) = cS\left(\mathbf{v}\right) + cT\left(\mathbf{v}\right) = \left( cS+ cT\right)\left(\mathbf{v}\right) and hence, c\left(S+T\right)\left(\mathbf{v}\right) =\left( cS+ cT\right)\left(\mathbf{v}\right)
8. (Distributivity of scalar multiplication with respect to field addition). Let T\in \mathcal{L}\left(V,V\right), \mathbf{v} \in V and c_{1},c_{2} \in \mathbb{F}. Then, noting that \left(c_{1} +c_{2}\right)\mathbf{v} = c_{1}\mathbf{v} + c_{2}\mathbf{v} \;\;\forall\; \mathbf{v} \in V, c_{1},c_{2} \in \mathbb{F}, we have that T\left(\left(c_{1} +c_{2}\right)\mathbf{v}\right) = \left(c_{1} +c_{2}\right) T\left(\mathbf{v}\right) and also T\left(\left(c_{1} +c_{2}\right)\mathbf{v}\right)= T\left(c_{1} \mathbf{v}\right) + T\left(c_{2}\mathbf{v}\right) = c_{1}T\left( \mathbf{v}\right)+ c_{2}T\left( \mathbf{v}\right) = \left(c_{1}T + c_{2}T\right)\left( \mathbf{v}\right) and hence, \left(c_{1} +c_{2}\right) T\left(\mathbf{v}\right)= \left(c_{1}T + c_{2}T\right)\left( \mathbf{v}\right) Therefore, the set \mathcal{L}\left( V,V\right) forms a vector space over \mathbb{F} under point-wise addition and scalar multiplication.
Is this a correct analysis?