Linear Transformation from R^2 to R^3

JG89
Messages
724
Reaction score
1
Suppose a linear transformation T: R^2 \rightarrow R^3 was defined by T(a_1,a_2) = (2a_1, a_2 + a_1, 2a_2). Now, for example, would I be allowed to evaluate T(3,8,0) by rewriting (3,8,0) as (3,8)?
 
Physics news on Phys.org
JG89 said:
Suppose a linear transformation T: R^2 \rightarrow R^3 was defined by T(a_1,a_2) = (2a_1, a_2 + a_1, 2a_2). Now, for example, would I be allowed to evaluate T(3,8,0) by rewriting (3,8,0) as (3,8)?
Not allowed. It's R^2 to begin with. In some cases, it might seem as though such practice were allowed, for example when you're working over the vector space of polynomial functions and have to add some polynomials which are not of the same degree, so the coefficients of the "missing" powers of x are treated as 0. However in such a case it's already implicitly understood that we usually omit writing 0x^3, 0x^4 for example even though they are there.

In your case, how ever, it is not clear cut as to why we should interpret (3,8,0) as (3,8). Why couldn't it be seen as (8,0) instead?
 
It seems to me that (3,8,0) and (3,8) represent the same location, if you interpret the coordinates geometrically. My high school math teacher said that this practice was allowed when evaluating cross products, so I thought it might have been okay here. For example, the cross product isn't defined in R^2. So if you wanted to find the cross product of (3,4) and (4,6), you would simply rewrite it as (3,4,0) and (4,6,0).
 
Well it depends on the context. If you're an engineering student of course it makes sense to do so. But from a mathematical perspective it's not. It's only ok if it's understood to be intentionally omitted.

By the way you posted this in the Linear Algebra forums. Posting it elsewhere might net you a different answer. Don't try it though, since duplicate threads across different forums are frowned upon.
 
Thanks for the help (I was only concerned with the mathematical viewpoint).
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
7
Views
1K
Replies
10
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Replies
1
Views
3K
Replies
3
Views
2K
Back
Top