Linear Transformation Isomorphism

zwingtip
Messages
20
Reaction score
0
I think I've solved this problem, but the examples in my textbook are not giving me any indication as to whether my reasoning is sound.

Homework Statement


Is the transformation

T(M) = M\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]

from \mathbb{R}2x2 to \mathbb{R}2x2 linear? If it is, determine whether it is an isomorphism.

Homework Equations


T(f + g) = T(f) + T(g)
T (kf) = k T(f)
T-1(T(M)) = M

The Attempt at a Solution


T(M1+M2) = T(M1) + T(M2)

T(kM) = k T(M

Therefore, T(M) is a linear transformation.

\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right] is not invertible, so T is an isomorphism if Ker(T) = 0.

\left[ \begin{array}{cccc} m_1 & m_2 \\ m_3 & m_4\end{array} \right]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]=\left[ \begin{array}{cccc} m_1+3m_2 & 2m_1+6m_2 \\ m_3+3m_4 & 2m_3+6m_4\end{array} \right]=\left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right]

Then m_1 = -3m_2, m_3 = -3m_4 and

Ker(T)=\left[ \begin{array}{cccc} -3 & 1 \\ -3 & 1\end{array} \right]\neq \left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right]

Therefore, the transformation T(M) is linear, but is not an isomorphism.

So I guess my question is, have I done this correctly? Thanks for any help.
 
Physics news on Phys.org
Yes, I believe you have done that correctly. T(0)=0 and T([-3,1],[-3,1])=0. Definitely not 1-1.
 
Awesome. Thanks!
 
zwingtip said:
I think I've solved this problem, but the examples in my textbook are not giving me any indication as to whether my reasoning is sound.

Homework Statement


Is the transformation

T(M) = M\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]

from \mathbb{R}2x2 to \mathbb{R}2x2 linear? If it is, determine whether it is an isomorphism.

Homework Equations


T(f + g) = T(f) + T(g)
T (kf) = k T(f)
T-1(T(M)) = M

The Attempt at a Solution


T(M1+M2) = T(M1) + T(M2)

T(kM) = k T(M

Therefore, T(M) is a linear transformation.

\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right] is not invertible, so T is an isomorphism if Ker(T) = 0.
Because T is not invertible, it is not an isomorphism- every isomorphism is, by definition, invertible.

\left[ \begin{array}{cccc} m_1 & m_2 \\ m_3 & m_4\end{array} \right]\left[ \begin{array}{cccc} 1 & 2 \\ 3 & 6\end{array} \right]=\left[ \begin{array}{cccc} m_1+3m_2 & 2m_1+6m_2 \\ m_3+3m_4 & 2m_3+6m_4\end{array} \right]=\left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right]

Then m_1 = -3m_2, m_3 = -3m_4 and

Ker(T)=\left[ \begin{array}{cccc} -3 & 1 \\ -3 & 1\end{array} \right]\neq \left[ \begin{array}{cccc} 0 & 0 \\ 0 & 0\end{array} \right]

Therefore, the transformation T(M) is linear, but is not an isomorphism.

So I guess my question is, have I done this correctly? Thanks for any help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top