Linear Transformation - Linear Algebra

ohlhauc1
Messages
27
Reaction score
0
[SOLVED] Linear Transformation - Linear Algebra

Homework Statement



Determine if T is linear. T(x,y,z) = (1,1)

Homework Equations



Definition of Linear Transformation: A function T: R^n --> R^m is a linear transformation if for all u and v in R^n and all scalars c, the following principles are satisfied:

Homogeneity Principle: T(cu) = cT(u)
Additivity Principle: T(u+v) = T(u) + T(v)

The Attempt at a Solution



The answer that was given for this question is false, and I am trying to see why. Therefore, this is what I've done but I am missing something because I always get true if I am to assume that T(cx, cy, cz) = (c,c) but the answer is supposed to be (1,1).

My reason thus far has been to say that because there are no variables in the solution of the transformation (1,1), then a scalar cannot be multiplied to it, but that doesn't make sense because it should work for all vectors, regardless of whether they are numbers or letters. The answer my prof gave was this:

T(cx, cy, cz) = (1,1) which does not equal c(1,1) = cT(x,y,z). He didn't bother with the addivitivity since both principles need to be upheld for the transformation to be linear.

If you could clarify, I would really appreciate it!
 
Physics news on Phys.org
1. Write out T(cu)
2. Write out T(u)
3. Multiply "2" with c
4. Compare "3" with "1"
 
Constant transformations should send up red flags. Remember that linear transformations form a vector space. So they need to work with the kind of manipulations EnumaElish described.
 
I see it now! Thanks so much!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top