Linear Transformation of a Plane

Click For Summary
SUMMARY

The discussion centers on the properties of a linear transformation \( T: \mathbb{R}^3 \mapsto \mathbb{R}^3 \) and its effect on a plane defined by two linearly independent vectors \( \textbf{u} \) and \( \textbf{v} \). It is established that \( T \) can map the plane \( P \) onto another plane through the origin, a line through the origin, or collapse it to the origin itself. The conditions for these mappings depend on the linear independence of the transformed vectors \( T(\textbf{u}) \) and \( T(\textbf{v}) \). Specifically, \( T(\textbf{u}) \) and \( T(\textbf{v}) \) must be linearly independent for the image to remain a plane.

PREREQUISITES
  • Understanding of linear transformations in vector spaces
  • Knowledge of linear independence and its implications
  • Familiarity with parametric equations of planes in \( \mathbb{R}^3 \)
  • Basic concepts of surjective functions in mathematics
NEXT STEPS
  • Study the properties of linear transformations in \( \mathbb{R}^3 \)
  • Learn about the implications of linear independence in vector spaces
  • Explore the concept of surjective functions and their proofs
  • Investigate the geometric interpretation of linear transformations on planes
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in understanding the effects of linear transformations on vector spaces.

bwpbruce
Messages
60
Reaction score
1
$\textbf{Problem}$
Let $\textbf{u}$ and $\textbf{v}$ be linearly independent vectors in $\mathbb{R}^3$, and let $P$ be the plane through $\textbf{u}, \textbf{v}$ and $\textbf{0}.$ The parametric equation of $P$ is $\textbf{x} = s\textbf{u} + \textbf{v}$ (with $s$, $t$ in $\mathbb{R}$). Show that a linear transformation $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ maps $P$ onto a plane through $\textbf{0}$ or onto a line through $\textbf{0}$ or onto just the origin $\mathbb{R}^3$. What must be true about $T\textbf{u}$

$\textbf{Solution}$

\begin{align*}T(\textbf{x}) &= T(s\textbf{u} + t\textbf{v}) \\&=T(s\textbf{u}) + T(t\textbf{u}) = sT\textbf{(u)} + tT\textbf{(v)}\end{align*}

\begin{align*}T(\textbf{0}) &= sT(\textbf{0}) + tT(\textbf{0})\\&=\textbf{0}\end{align*}

$T(\textbf{x})$ goes through the origin.

$T(\textbf{x})$ is a plane in $\mathbb{R}^3$ through $\textbf{0}$ in the case when $T(\textbf{(u)}) \ne tT(\textbf{(v)})$ and $T(\textbf{(v)} \ne sT\textbf{(u)}$.

$T(\textbf{x})$ is a line in $\mathbb{R}^3$ through $\textbf{0}$ in the case when $T(\textbf{(u)}) = tT(\textbf{(v)})$ or $T(\textbf{(v)} = sT\textbf{(u)}$

$T(\textbf{x})$ is a zero vector $\mathbb{R}^3$ in the case when $T(\textbf{u}) = T\textbf{v} = \textbf{0}$.

Can someone please provide feedback on this solution? Thanks.
 
Last edited:
Physics news on Phys.org
bwpbruce said:
Show that a linear transformation $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ maps $P$ onto a plane through $\textbf{0}$ or onto a line through $\textbf{0}$ or onto just the origin $\mathbb{R}^3$. What must be true about $T\textbf{u}$
It may be a question of terminology, but I think that the phrase "A function $f$ maps a set $A$ onto a set $B$" means that $f$ is onto, i.e., a surjection. Thus, it is important to understand that you need to prove not only that that the image of every point from the original plane lies on the plain (or line, or point) generated by $0$, $T(\mathbf{u})$ and $T(\mathbf{v})$, but also that every point on the second plain is the image. I don't think you need to change your solution, but this should be kept in mind.

bwpbruce said:
$T(\textbf{x})$ is a plane in $\mathbb{R}^3$ through $\textbf{0}$ in the case when $T(\textbf{(u)}) \ne tT(\textbf{(v)})$ and $T(\textbf{(v)} \ne sT\textbf{(u)}$.
This can be stated by saying that $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly independent.

bwpbruce said:
$T(\textbf{x})$ is a line in $\mathbb{R}^3$ through $\textbf{0}$ in the case when $T(\textbf{(u)}) = tT(\textbf{(v)})$ or $T(\textbf{(v)} = sT\textbf{(u)}$
This does not prevent the case when both $T(\mathbf{u})$ and $T(\mathbf{v})$ are zero vectors.

Is there any significance in double parentheses?
 
Is there any significance in double parentheses?

No, not really. I appreciate all your contributions.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K