RadiationX
- 255
- 0
I'm having some difficulty understanding how to perform linear transformations on matrices. I understand the definition but not how to perform the operations. I'm going to give a few examples from my book:
Suppose that T: R^2 \longrightarrow R^2 is a linear transformation such that.
T\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right)=\left( \left[\begin{array}{cc}2\\3\end{array}\right]\right)
And
T\left(\left[\begin{array}{cc}1\\-1\end{array}\right]\right)= \left(\left[\begin{array}{cc}4\\-1\end{array}\right]\right)
(a) Find: T\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right)
Solution:
since:
\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right) = 3\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right)
it follows that
T\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right) = T3\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right) = 3T\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right) = 3\left(\left[\begin{array}{cc}2\\3\end{array}\right]\right) = \left(\left[\begin{array}{cc}6\\9\end{array}\right]\right)
How do they come to this solution?
Suppose that T: R^2 \longrightarrow R^2 is a linear transformation such that.
T\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right)=\left( \left[\begin{array}{cc}2\\3\end{array}\right]\right)
And
T\left(\left[\begin{array}{cc}1\\-1\end{array}\right]\right)= \left(\left[\begin{array}{cc}4\\-1\end{array}\right]\right)
(a) Find: T\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right)
Solution:
since:
\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right) = 3\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right)
it follows that
T\left(\left[\begin{array}{cc}3\\3\end{array}\right]\right) = T3\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right) = 3T\left(\left[\begin{array}{cc}1\\1\end{array}\right]\right) = 3\left(\left[\begin{array}{cc}2\\3\end{array}\right]\right) = \left(\left[\begin{array}{cc}6\\9\end{array}\right]\right)
How do they come to this solution?