Linear Transformations: Proofs and Examples for R^2 to R^2

karnten07
Messages
206
Reaction score
0
[SOLVED] Linear transformations

Homework Statement



Determine whether the following maps are linear transformations. (proofs or counterexamples required)

a.) L: R^2\rightarrowR^2,

(x1)
(x2)
\mapsto
(2x1 + 3x2)
(0)

The brackets should be two large brackets surrounding the two vectors.

The Attempt at a Solution


I've been reading about linear transformations and i know i have to show something like:

L(x1+x2)= L(x1) +L(x2) and L(cx1)= cL(x1) where c is a scalar.

Is this right and i should treat x1 and x2 separately rather than the vector including x1 and x2 as one element of R^2?

What I am trying to say is, do i need to define a vector (y1, y2) as well in the set of R^2?
 
Last edited:
Physics news on Phys.org
For x,y \inR^2,

x=(x1,x2) and y= (y1,y2)

x+y=(x1,x2)+(y1,y2)= (x1+y1, x2+y2)
L(x+y) = L(x1+y1, x2+y2)
=2(x1+y1)+3(x2+y2)
=(2x1+3x2)+(2y1+3y2)
=L(x) +L(y)

Is this right for the first part?

Then because cx= c(x1,x2) = (cx1,cx2) you have
L(cx) = L(cx1, cx2) = (2cx1 + 3cx2)
=c(2x1 + 3x2)
=cL(x)

I think I'm understanding it more now, if this is right that is.
 
That's right. I think you've got it.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top