Linear Velocity and Acceleration

AI Thread Summary
In rotational motion, an object can exhibit both tangential and radial (centripetal) acceleration. Tangential acceleration occurs only when the rotation is speeding up, while centripetal acceleration is always present to maintain circular motion. The actual linear acceleration of the object is calculated using the formula a = √(a²_c + a²_t), as tangential and centripetal accelerations are orthogonal. This relationship holds true when there is no angular acceleration, meaning the tangential velocity remains constant. Understanding these concepts is crucial for analyzing the dynamics of rotating systems.
vladittude0583
Messages
40
Reaction score
0
Hey guys, we have just finished Chapter 10 (Rotation) and I have some questions regarding some of the concepts. For an object to rotate about some axis, any given particle at point P at some radius "r" has a linear velocity (tangential velocity) and linear acceleration (tangential acceleration). Now, I know that for a particle/object undergoing uniform circular motion, it has a velocity tangential to is radial acceleration. However, how come when you have it rotating about a fixed axis, it has both a tangential acceleration and radial acceleration? Furthermore, they say that the acceleration of the object is the magnitude of both tangential and radial acceleration? Is this magnitude "a" supposed to be the actual acceleration of the particle/object if it was traveling in a linear motion? Or is it because of the fact that a = delta v / delta t?

Thanks.
 
Physics news on Phys.org
There is only tangential acceleration if the rotation is speeding up (if there is radial acceleration). However there is always centripetal acceleration if an object is rotating. You can imagine that as a string holding a ball being swung around. The centripetal acceleration is keeping the ball going in a circle. If the string broke suddenly, it would only have a velocity tangential to where it broke.

Now if there is tangential and centripetal acceleration, the actual acceleration of the object is a=\large\sqrt{a^{2}_{c}+a^{2}_{t}}. This is because the tangential and centripetal accelerations form a 90 degree angle. This is the linear acceleration (dv/dt), and the actual acceleration. These things are all different ways of stating the same thing. It is the acceleration of the object.
 
This wikimedia photo might help conceptually

300px-Centripetal_force.svg.png


This is if there is no angular acceleration. That is, tangential velocity is constant and nonzero.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top