Links between sub-fields of mathematics

  • Thread starter Thread starter NotGauss
  • Start date Start date
  • Tags Tags
    Links Mathematics
NotGauss
Messages
24
Reaction score
6
Hello all!
Today I was in my vector calculus course (as a student) and we were learning about/calculating the unit tangent vector (T(t)) and principal unit normal vector(N(t)). We calculated T(1) and then moved onto N(1), ((1) our arbitrary point to see how it plays out). Nevertheless, after calculating N(1) with way too much algebra in my point of view and being told that/realizing that N(1) is orthogonal to T(1), I though "hey! i just did this in linear algebra and it took about 1/10th of the time and calculations by using transformations", and blurted this out in class. ( insert, smile from math teach, rumbles about linear algebra from fellow students that had to learn dets in calculus)
So, getting closer to the point,in the past two weeks I read Love and Math by Edward Frenkel and Fermat's Enigma by Simon Singh, which in both books stressed the actual and possibility of interconnected sub-fields of mathematics. So without further delay, what are some additional connections that would be interesting to an undergrad mathematics student such as myself? Excluded the beauties of analytical geometry...of course.

Thanks for your time and help,
Jon

P.S. I was not sure if "General Math" was the correct spot for this posting, but it seemed logical. If not please move to correct forum.
 
Mathematics news on Phys.org
There are some strong connections between linear algebra and differential equations, including the similarity between vector spaces and function spaces. The concepts of basis and spanning sets are present in both areas, as are the concepts of kernel, linear independence/dependence, and others.
 
Mark,
Thank you for the reply, I'll start looking into this over the coming weeks. Would you recommend any book, articles, text or just general GTS?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top