1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Locate Absolute Extrema

  1. Nov 3, 2012 #1
    1. The problem statement, all variables and given/known data

    Locate the absolute extrema of the given function on the indicated interval.

    f(x) = -x^2 + 3x ; interval: [0 , 3 ]

    2. Relevant equations



    3. The attempt at a solution

    f'(x) => -2x + 3x = 0
    => x = 0

    f(0) = -(0)^2 + 3(0) = 0
    f(3) = -(3)^2 + 3(3) = 0

    My answer: Absolute minimum (0,0) and (3,0)

    Now, my book gives the following answer for the problem above:

    Minima: (0, 0) and (3, 0)
    Maximum: (3/2) and (9/4)

    Where does 3/2 and 9/4 come from?
     
  2. jcsd
  3. Nov 3, 2012 #2
    Your derivative is incorrect. Specifically, this part:

    [tex]\frac{d}{dx}3x[/tex]
     
  4. Nov 3, 2012 #3

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    You have only found the minima; you also need to find the maximum.

    RGV
     
  5. Nov 3, 2012 #4
    Ok, I have:

    f'(x) = -2x + 3(1) = 0
    = -2x = -3
    x = 3/2
     
  6. Nov 3, 2012 #5
    ohh I understand now!
    Thank you so much!
     
  7. Nov 3, 2012 #6
    I just have another question: On my notes, I see I should find the critical point. It says that for that, the derivative = 0 or the derivative is undefined.

    But in this case, wouldn't -3/2 be the critical point?

    What's confusing me is that I have the following on my notes:

    f(x) = 2(3 - x) ; interval [ -1, 2]

    differentiating: 6 - 2x = 0
    0 - 2x = 0
    x = -0/2

    Now, why 2x wasn't differentiated and written as 2(1) ?
     
    Last edited: Nov 3, 2012
  8. Nov 3, 2012 #7

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    If this is what you have written in your notes, your notes are a mess. The derivative of 6 - 2x is not -2x.

    RGV
     
  9. Nov 3, 2012 #8
    How about the critical point? Where's the critical point for the first problem?
     
  10. Nov 3, 2012 #9
    I can't have copied everything wrong. I have two other problems that I copied from the blackboard that follow the same thought:

    Look at this one:

    -x^2 + 3x ; interval [0,3]

    => -x^2 + 3x = 0
    => -2x + 3x = 0
    => x = 0

    Another problem:

    f(x) = x^3 - 3x^2; interval: [-1,3]
    3x^2 - 6x = 0
    6x - 6x = 0
    x = 0

    It seems that x should always be 0 or undefined because that is what I have on my notes:

    "A critical point is an interior point of the domain of f where f' is zero or f' is undefined."
     
    Last edited: Nov 3, 2012
  11. Nov 3, 2012 #10

    Mark44

    Staff: Mentor

    Why are you setting -x2 + 3x to zero?
    This is wrong.
    Let's start from the beginning...

    f(x) = -x2 + 3x, on [0, 3]
    f'(x) = d/dx(-x2 + 3x) = ? (It's NOT -2x + 3x!)

    f'(x) = 0 => ? = 0

    An important point that you seem to be missing is that maxima or minima can occur at these places:
    1. Numbers in the domain at which the derivative is zero.
    2. Numbers in the domain at which the original function is defined, but the derivative is undefined.
    3. Endpoints of the domain.
    ???
    What are you doing?
    Your notes are wrong.
     
    Last edited: Nov 3, 2012
  12. Nov 3, 2012 #11
    Ohhh I got it!! I thought this was part of my notes but I just realized that it was me trying to do the homework that thought I had understood. I decided to do my homework right next to my notes...bad choice...I am sorry!!
     
  13. Nov 4, 2012 #12
    I have just one example on my notes about this. This is a simple exercise that i can't get. Could someone PLEASE do -x^3 + 3x intervals (0,3) so that I can finally understand the steps I need to take in this problem ?? Please I still have 10 questions to answer and i cant get through the first one.
     
  14. Nov 4, 2012 #13
    Anyone???
     
  15. Nov 4, 2012 #14
    Anyone available?
     
  16. Nov 4, 2012 #15
    Ok. First, what is:
    [tex]\frac{d}{dx} (-x^3+3x)[/tex]
     
  17. Nov 4, 2012 #16
    -3x^2 + 3
     
  18. Nov 4, 2012 #17
    What steps should I take from here?
    Thank you so much for replying!
     
  19. Nov 4, 2012 #18

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    What steps did you take in other problems like this one (i.e., the other problems that people have already helped you with)? Just do the same types of steps on this one.

    RGV
     
  20. Nov 4, 2012 #19
    Here I was told that I shouldn't have it " = 0 " then, what's the right way to do it?
     
  21. Nov 4, 2012 #20

    Mark44

    Staff: Mentor

    f(x) = -x3 + 3x, on (0, 3)
    f'(x) = -3x2 + 3
    f'(x) = 0 => -3x2 + 3 = 0 => -3(x2 - 1) = 0
    => x = ?

    Told by whom?
    "Shouldn't have it = 0" - what is it?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Locate Absolute Extrema
  1. Absolute extrema (Replies: 4)

  2. Absolute Extrema (Replies: 6)

  3. Absolute extrema (Replies: 7)

Loading...