Locate any bifurcation in 2D system

fwang6
Messages
6
Reaction score
0

Homework Statement



bifurcation for the following 2D system:

Homework Equations



x'=ux−y+x^3,y′=bx−y

The Attempt at a Solution


I have got ux−y+x^3=0, y=bx, then x=0 and ±sqrt(b−u).

But I don't how to continue to find the bifurcation?
 
Physics news on Phys.org
fwang6 said:

Homework Statement



bifurcation for the following 2D system:

Homework Equations



x'=ux−y+x^3,y′=bx−y

The Attempt at a Solution


I have got ux−y+x^3=0, y=bx, then x=0 and ±sqrt(b−u).

But I don't how to continue to find the bifurcation?

What happens when b - u < 0?

In general, you are looking for values of the parameters for which at least one eigenvalue of <br /> \begin{pmatrix}<br /> \frac{\partial x&#039;}{\partial x} &amp; \frac{\partial x&#039;}{\partial y} \\<br /> \frac{\partial y&#039;}{\partial x} &amp; \frac{\partial y&#039;}{\partial y}<br /> \end{pmatrix}<br /> at a fixed point has zero real part.
 
if b-u<0,no critical points exist.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top