Loop integral computation

metricspace
Messages
2
Reaction score
0
Homework Statement
Ok
Relevant Equations
Ok
I am trying to compute the following loop integral:
$$
\require{cancel}
\displaystyle
\begin{align}
I= \int \frac{d^4k}{(2\pi)^4}\bar u(p')\frac{[k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}]}{[k^2-M^2+i\epsilon][(k-p)^2-m^2+i\epsilon][(k-p')^2-m^2+i\epsilon]}u(p),
\end{align}
$$
with 2 different methods.
First Method: Rewrite the numerator and cancel the denominator. The numerator is
$$
\begin{align}
N^\mu &= k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k}
\nonumber \\
&= k^2k^\mu - \frac{1}{2}(k^2-[(k-p)^2-m^2])k_\nu \gamma^\nu\gamma^\mu -\frac{1}{2}(k^2-[(k-p')^2-m^2])k_\nu\gamma^\mu\gamma^\nu
\nonumber \\
&= \frac{1}{2}[(k-p)^2-m^2]k_\nu \gamma^\nu\gamma^\mu +\frac{1}{2}[(k-p')^2-m^2]k_\nu\gamma^\mu\gamma^\nu.
\end{align}
$$
Thus,
$$
\begin{align}
\require{cancel}
\displaystyle
I =& \frac{1}{2}\int\frac{d^4k}{(2\pi)^4}\bar u(p') \frac{1}{[k^2-M^2+i\epsilon]} \left( \frac{k_\nu}{[(k-p')^2-m^2+i\epsilon]}\gamma^\nu\gamma^\mu + \frac{k_\nu}{[(k-p)^2-m^2+i\epsilon]}\gamma^\mu\gamma^\nu \right) u(p)
\nonumber \\
&= \frac{1}{2}A\bar u(p')(p'_\nu\gamma^\nu\gamma^\mu + p_\nu\gamma^\mu\gamma^\nu) u(p)
\nonumber \\
&= Am \bar u(p') \gamma^\mu u(p),
\end{align}
$$
where ##A## is a scalar.
Second Method: Feynman Parametrization. The denominator becomes:
$$
\require{cancel}
\displaystyle
\begin{align}
[k^2-M^2+i\epsilon]^{-1}[(k-p)^2-m^2+i\epsilon]^{-1}[(k-p')^2-m^2+i\epsilon]^{-1}=
\int_0^1dx\int_0^{1-x}dy \frac{2}{[l^2-\Delta^2+i\epsilon]^3},
\end{align}
$$
where ##l^\mu=(k-xp-yp')^\mu##, ##\Delta^2=(x+y)^2m^2+(1-x-y)M^2-xyq^2##, and, ##q^\mu=(p'-p)^\mu##.
Next, we perform the shift in the numerator:
$$
\begin{align}
N^\mu = k^2k^\mu - (k\cdot p)\cancel{k}\gamma^\mu -(k\cdot p')\gamma^\mu\cancel{k} = A_1 \bar u(p') \gamma^\mu u(p) + A_2 \bar u(p') \frac{i\sigma^{\mu\nu}q_\nu}{2m} u(p),
\end{align}
$$
where ##A_1## and ##A_2## are scalars. This method clearly gives a different result.
The first method gives the correct result (the result should not contain a ##i\sigma^{\mu\nu}q_\nu/2m## term), so the problem must be related with the Feynman Parametrization somehow.
The denominator ##[(k-p)^2-m^2+i\epsilon]=[k^2-2(k\cdot p)+i\epsilon]## (and the other one with ##p'##) could be problematic when ##k\to 0##, however there are other terms in the numerator (which I did not included here) that give the correct result with the same denominator and using Feynman Parametrization, i.e., using the second method. On the other hand these same terms (which give the correct result) are UV finite but the one in question is not. Is the problem in the IR or UV or both?
I believe I didn't make any mistakes on the passages, so what am I missing?
 
Physics news on Phys.org
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
 
mad mathematician said:
I believe this calculation is done explictly in Srednicki's textbook or its solution manual. Enjoy!
where exactly?
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top