Lorentz Algebra in Boosts for the spin-1/2 Dirac Field

maverick280857
Messages
1,774
Reaction score
5
Hi,

What is the origin of the following commutation relation in Lorentz Algebra:

[J^{\mu\nu}, J^{\alpha\beta}] = i(g^{\nu\alpha}J^{\mu\beta}-g^{\mu\alpha}J^{\nu\beta}-g^{\nu\beta}J^{\mu\alpha}+g^{\mu\beta}J^{\nu\alpha})

This looks a whole lot similar to the commutation algebra of angular momentum in O(4). But how does the Metric Tensor enter here? I encountered this while studying about boosts in the context of the Dirac Equation.

Thanks.
 
Physics news on Phys.org
maverick280857 said:
Hi,

What is the origin of the following commutation relation in Lorentz Algebra:

[J^{\mu\nu}, J^{\alpha\beta}] = i(g^{\nu\alpha}J^{\mu\beta}-g^{\mu\alpha}J^{\nu\beta}-g^{\nu\beta}J^{\mu\alpha}+g^{\mu\beta}J^{\nu\alpha})

This looks a whole lot similar to the commutation algebra of angular momentum in O(4). But how does the Metric Tensor enter here? I encountered this while studying about boosts in the context of the Dirac Equation.

Thanks.


This is the "Master commutation" rule of the Lorentz section of the Poincaré group

http://en.wikipedia.org/wiki/Poincaré_group

J^{\mu\nu} can be both a rotation generator as well as a boost generator, so this is the most
general way of defining the commutation rules between these generators.


It's far simpler to look at the individual rules like [J^i,J^i] and [K^i,K^i] or [J^i,K^i] where
J and K are the rotation and boost generators respectively.


You can find these in many books like Ryder, Weinberg (vol 1) or P&S


Regards, Hans
 
Thanks.
 
maverick280857 said:
Hi,

What is the origin of the following commutation relation in Lorentz Algebra:

[J^{\mu\nu}, J^{\alpha\beta}] = i(g^{\nu\alpha}J^{\mu\beta}-g^{\mu\alpha}J^{\nu\beta}-g^{\nu\beta}J^{\mu\alpha}+g^{\mu\beta}J^{\nu\alpha})

This looks a whole lot similar to the commutation algebra of angular momentum in O(4). But how does the Metric Tensor enter here? I encountered this while studying about boosts in the context of the Dirac Equation.

Thanks.

Lorentz algebra is SO(4) algebra, synonymous almost. To be exact, Lorentz algebra is SO(3,1) algebra. So you can derive the commutation relations for SO(4), and try to turn SO(4) into SO(3,1) by converting Krockner deltas into metric tensors by raising or lowering.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top