I Lorentz Transformation Matrix: Tensor of Order 2?

Ben Geoffrey
Messages
16
Reaction score
0
Is the Lorentz transformation matrix Λμν a tensor of order two and does it transform like a tensor ?
 
Physics news on Phys.org
Ben Geoffrey said:
Is the Lorentz transformation matrix Λμν a tensor of order two and does it transform like a tensor ?

Yes, but it's a little subtle. A transformation matrix simultaneously has two different interpretations:

  1. As a "passive" transformation: If you have a vector V and its components in one coordinate system are V^\mu, then its components in a second coordinate system (related to the first through a Lorentz transformation) will be given by: V^\nu = \sum_\mu \Lambda_\mu^\nu V^\mu.
  2. As an "active" transformation: If V is one vector, then we can defined a second, boosted vector V' via: (V')^\nu = \sum_\mu \Lambda_\mu^\nu V^\mu.
The distinction is a little subtle: In the first case, you have the same vector described in two different coordinate systems, and in the second case, you two different vectors described in the same coordinate system.

Viewed as an active transformation, \Lambda_\mu^\nu is a tensor.
 
Thank you for that. I have another question. If its a tensor then can we say its written in covariant formulation ? Is there anything like a GTR formulation of STR ?
 
Sir my question is more along the lines of we write GTR in tensor notation right ? so if we write Lorentz transformation matrix in tensor notation does it mean we've combined STR and GTR and written it as one theory ?
 
Ben Geoffrey said:
Is there anything like a GTR formulation of STR ?

Ben Geoffrey said:
if we write Lorentz transformation matrix in tensor notation does it mean we've combined STR and GTR and written it as one theory ?

STR and GTR are one theory. STR is just the special case of GTR for which spacetime is flat. This is true regardless of what notation you use. You can do GTR without using tensor notation (though it's a lot more tedious).
 
Ben Geoffrey said:
Sir my question is more along the lines of we write GTR in tensor notation right ? so if we write Lorentz transformation matrix in tensor notation does it mean we've combined STR and GTR and written it as one theory ?

You can formulate any theory of physics (including Newtonian physics) as a tensor theory, as far as I know. You don't really change the theory when you change the mathematical formulation. SR in tensor notation is still SR.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top