LagrangeEuler
- 711
- 22
If we have motion of system ##S'## relative to system ##S## in direction of ##x,x'## axes, Lorentz transformation suppose that observers in the two system measure different times ##t## and ##t'##.
x'=\gamma(x-ut)
x=\gamma(x'+ut')
Why we need to use the same ##\gamma## in both relations? Why not
x'=\gamma'(x-ut)
x=\gamma(x'+ut')
x'=\gamma(x-ut)
x=\gamma(x'+ut')
Why we need to use the same ##\gamma## in both relations? Why not
x'=\gamma'(x-ut)
x=\gamma(x'+ut')